

Immune "therapies" in childhood epilepsy ?

Lieven Lagae Paediatric Neurology University Hospitals KULeuven Belgium

The first principle is that you must not fool yourself and you are the easiest person to fool.

(Richard Feynman)

Immunology, inflammation and childhood epilepsy

Treatment success

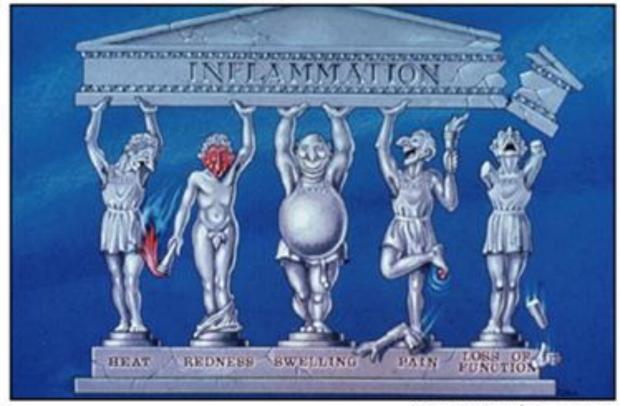
- Infantile spasms : treatment with ACTH / steroids
- CSWSS / Landau Kleffner
- Other epilepsies (?)

'Immune epilepsy syndromes' recognized by ILAE

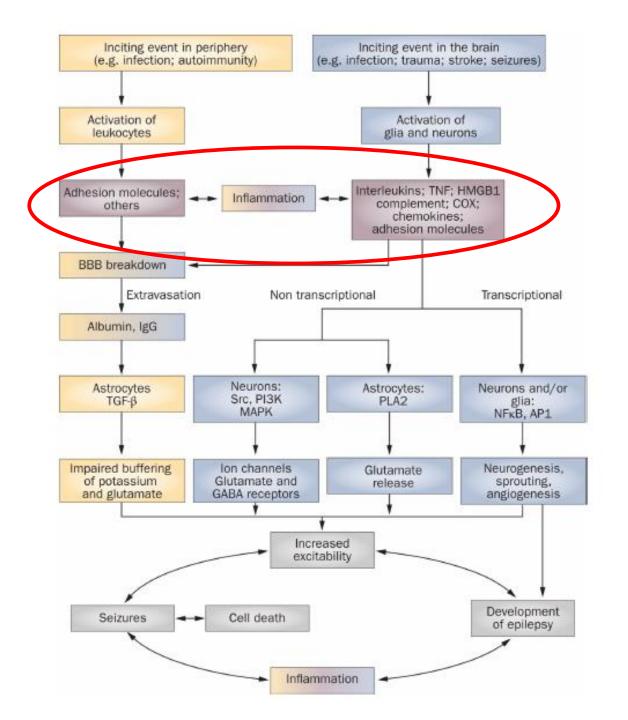
- FIRES : febrile infection related syndromes
- Rasmussen encephalitis
- Auto-immune encephalitis (anti NMDA,...)

Prevalence epilepsy in auto-immune diseases increased

Epilepsy in systemic autoimmune diseases


Autoimmune Disorder	Prevalence of Epilepsy in Children	OR (95% CI) ¹	Seizure Types
SLE	7%-40%	21.6 (11.0-42.7)	GTC, partial, and M
APS	3.2%-8.6%	9.0 (7.7-10.5)	Partial
RA	1%-1.7%	3.1 (1.4-7.0)	GTC and partial
SS	1%-10%	4.3 (3.2-5.6)	GTC, CP, and EPC
BD	2%-16%		GTC
IBD	3%-6%	8.4 (3.7-19.0)	GTC and CP
Celiac disease	1%-5.7%	16.7 (9.9-28.2)	Any type
WG	3%		GTC, CP, and M
Sarcoidosis	38% of pediatric neurosarcoidosis ⁴⁹		GTC, partial, and M
DM	1%-2%	3.9 (2.5-6.1)	
MG	1.7%	4.9	
HT	2.4% (66% in encephalopathy)	6.8 (3.5-13.3)	Any type, and EPC
GD	1.7%	4.7 (1.2-19.1)	GTC

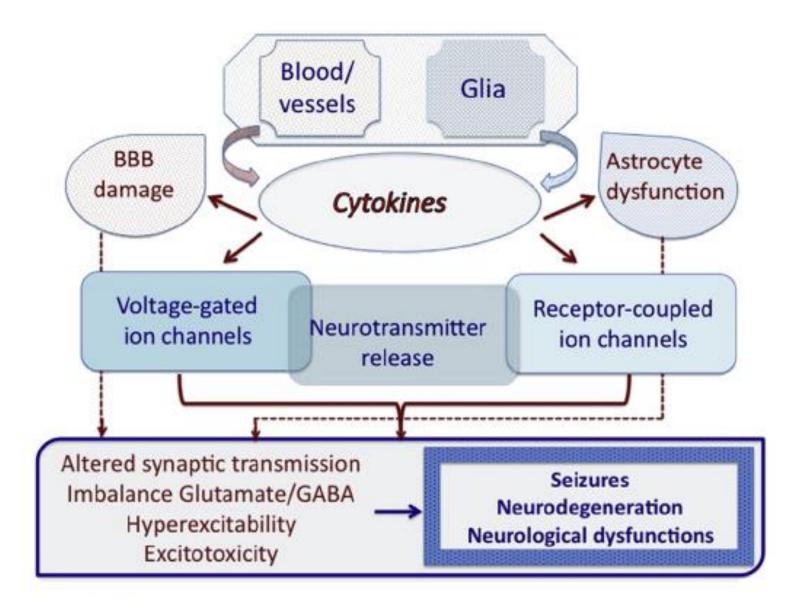
Modified from Ong et al¹, Devinsky et al², and Baumann and Robertson⁴⁹


APS, Antiphospholipid syndrome; BD, Behçet's Disease; CP, complex partial; EPC, epilepsia partialis continua; DM, Type 1 diabetes mellitus; GD, Graves disease; GTC, generalized tonic-clonic; HT, Hashimoto thyroiditis; IBD, inflammatory bowel disease; M, myoclonic; MG, myasthenia gravis; OR, odds ratio; RA, Rheumatoid arthritis; SLE, Systemic Lupus Erythematosus; SS, Sjögren's syndrome; WG, Wegener granulomatosis.

Valencia I, Sem in Ped Neurol, 2014

Neuro-inflammology for dummies

Nature Reviews | Immunology



Innate and adaptive immunology

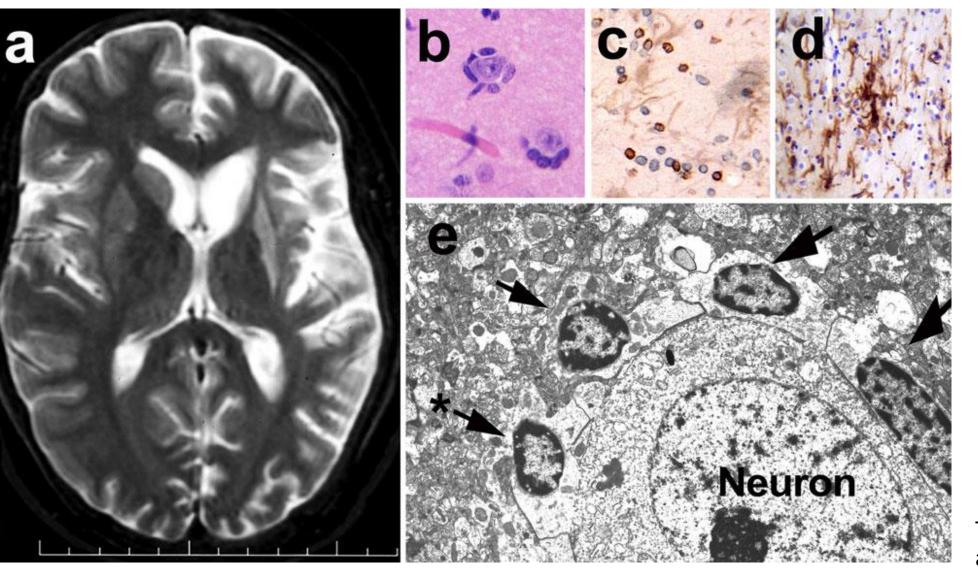
Primary in the brain or systemic via "broken" BBB

Cytokines key players

Cytokines : Influence/change/modulate receptor excitability

Cytokine	VGC	Signalling	Functional readout	ROC	Signalling	Functional readout
IL-1β/IL-1R1	VGSCs - Nav (Trigeminal neurons)	PKC/G-protein	^a Increased Na ⁺ currents Hyperalgesia	NMDAR-NR2B (Hippocampal cultures)	°Sphingomyelinase/Src K	Increased Ca ²⁺ influx Hyperexcitability/ Excitotoxicity Increased seizure susceptibility
	α_1 subunit (Cortical neurons)	PKC	Reduced Na ⁺ currents Neuroprotection	GABA-A R $\beta 2/\beta$ 3 subunits (Hippocampal cultures)	PI3K/Akt	Increased GABA current (Xenopus laevis oocytes)
	VGCCs — Cav L- and N-type (Hippocampal and cortical cultures)	PKC/G-protein	Reduced Ca ²⁺ influx Reduced Ca ²⁺ currents Neuroprotection	a5 subunit (Hippocampal slices)	р38-МАРК	Increased tonic GABA current
	VGKC — Kv (Trigeminal ganglion neurons — retinal ganglion cells)	n.d.	Reduced K ⁺ currents Neuroprotection Increased excitability Hyperalgesia			
TNFR1(p55)	°VGSCs – Nav 1.3	^b p38-MAPK	Enhanced TTX-R and TTX-S Na ⁺ currents Pain facilitation	^d AMPAR-GLUR2 (Hippocampal pyramidal cells)	PI3K/Akt	Increased Ca ²⁺ influx Hyperexcitability/ Excitotoxicity
	Nav1.7; Nav1.8 (sTNF-alfa in DRG)			AMPAR-GLUR1/GLUR2 (GABA neurons in striatum)	PP 1	Reduction of glutamatergic drive
	VGCCs – Cav (DRG)	n.d.	Decreased Ca ²⁺ currents	^c AMPAR-GIUR1 ^c NMDAR-NR1 (Hippocampus)	n.d.	Increased seizure susceptibility
	N-Type (Superior mesenteric ganglia <i>sTNF-alfa</i>)	NFĸB	Decreased Ca ²⁺ currents	(Hippocampal) GABA-A R $\beta 2/\beta$ 3 subunits (Hippocampal slices)	n.d.	Decreased inhibitory synaptic strength
TNFR2 (p75)	°VGSCs – Nav1.7; Nav1.8 (<i>mTNF</i> -α in DRG)	n.d.	Enhanced TTX-R and TTX-S Na ⁺ currents Pain facilitation	[°] AMPAR-GLUR2/GLUR3 [°] KA-GLUR6/7 [°] NMDAR-NR2 (Hippocampus)	n.d.	^c Decreased response to glutamate ^c Decreased seizures
	^c VGCCs – Cav3.2 (<i>mTNF</i> -α in DRG)	n.d.	Increased Cav3.2 expression	(
IL-6 (gp130)	VGSCs — Nav 1.7 (Trigeminal ganglia)	ERK1	Increased number of spikes; Decreased latency to first AP Hyperexcitability	mGLUR2/3	STAT3	Alterations in presynaptic glutamate release and changes in synaptic network activity
	α_1 subunit (spinal cord neurons)	n.d.	Reduced Na ⁺ currents Neuroprotection	AMPAR-GIUR2 (Hippocampal cultures)	n.d.	Reduced Ca ²⁺ influx
	VGCCs — Cav L-Type (CGC)	n.d.	Reduced Ca ²⁺ currents Neuroprotection	NMDAR-NR1 GABA-A R (Cerebellar granule neurons)	PI3K-Akt	Decreased GABA current

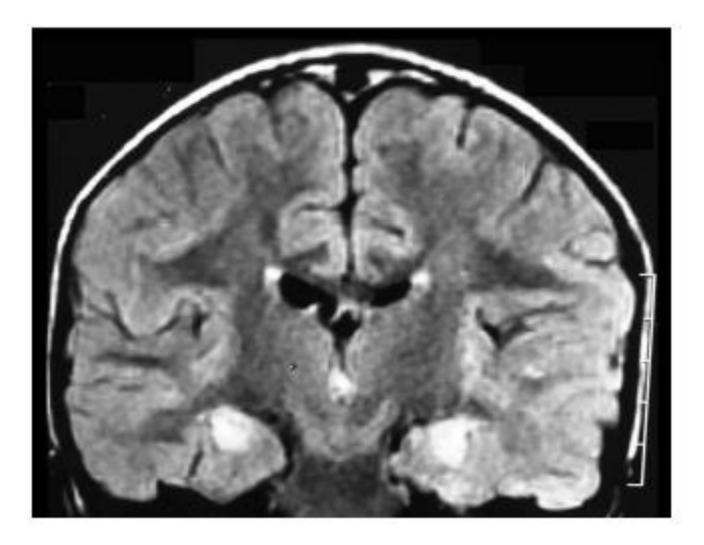
Mechanisms of Epileptogenesis in Pediatric Epileptic Syndromes: Rasmussen Encephalitis, Infantile Spasms, and Febrile Infection-related Epilepsy Syndrome (FIRES)


Carlos A. Pardo · Rima Nabbout · Aristea S. Galanopoulou

Trying to explain what we see in clinic

Mechanisms/disorder	Adaptive immunity	Innate immunity	Genetic	Infection	Other/metabolic
Rasmussen encephalitis	CD8 ⁺ T cell cytotoxicity against neurons and glia Suspected autoantibodies	Microglial and astroglial activation	Unknown	Suspected	Unknown
Infantile spasms	Disarrangements of T cell populations and increased cytokines in blood and cerebrospinal fluid Few cases with autoantibodies	Suspected	Several known gene mutations	Few cases described	Structural, metabolic
Febrile infection-related epilepsy syndrome	Suspected, inconclusive evidence	Suspected	Suspected	Suspected	Metabolic (suspected, inconclusive evidence)

Table 1 Mechanisms associated with epileptogenesis in pediatric epileptic syndromes


Rasmussen syndrome

Microglial activation

T lymphocytes around neuron

FIRES 3 weeks after status epilepticus in a 3.5 year old boy

How specific is this finding?

Infantile spasms as a model

Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics

Working Group: *Jo M. Wilmshurst, †William D. Gaillard, ‡Kollencheri Puthenveettil Vinayan, §Tammy N. Tsuchida, ¶Perrine Plouin, #Patrick Van Bogaert, **Jaime Carrizosa, ††Maurizio Elia, ‡‡§§Dana Craiu, ¶¶Nebojsa J. Jovic, ##Doug Nordli, ***Deborah Hirtz, †††‡‡‡Virginia Wong, §§§Tracy Glauser, ¶¶¶###Eli M. Mizrahi, and ****J. Helen Cross

> Epilepsia, 56(8):1185–1197, 2015 doi: 10.1111/epi.13057

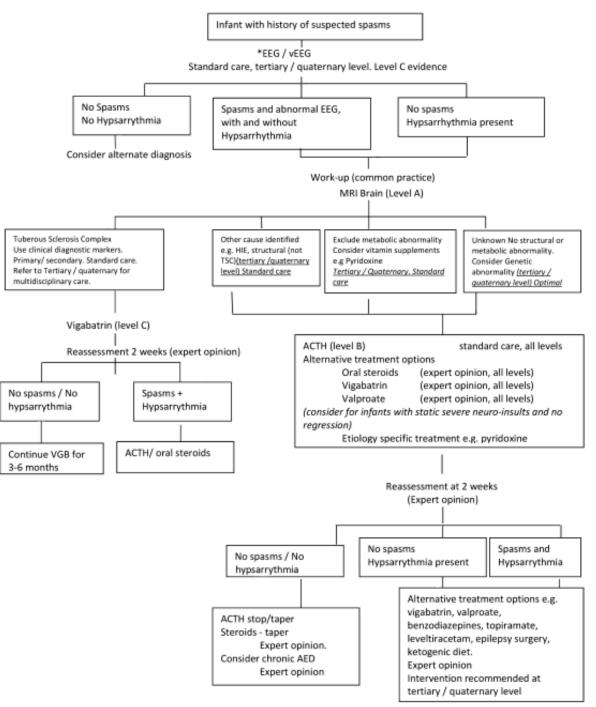
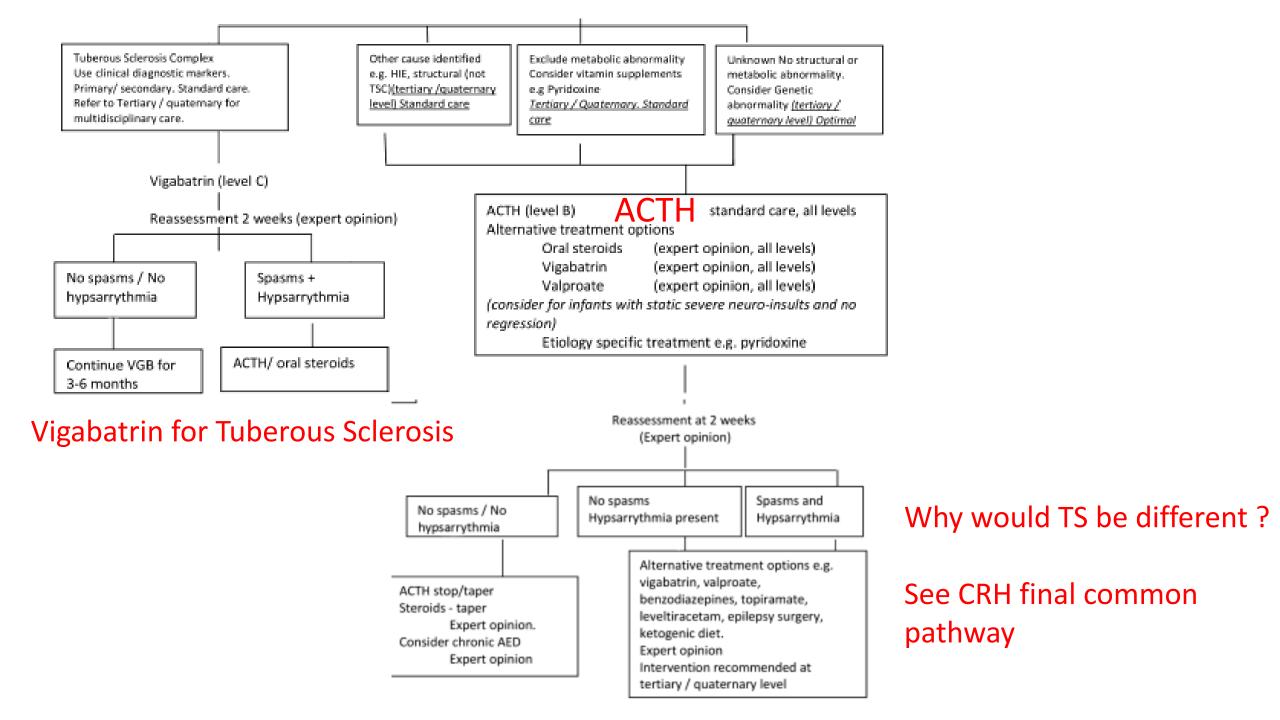



Figure 2.

[Intervention Review]

Treatment of infantile spasms

Eleanor C Hancock¹, John P Osborne², Stuart W Edwards³

¹c/o Cochrane Epilepsy Group, University of Liverpool, Liverpool, UK. ²The Children's Centre, Royal United Hospital, Bath, UK.
³The Children's Centre, International Collaborative Infantile Spasms Study (ICISS), Bath, UK

Contact address: Eleanor C Hancock, c/o Cochrane Epilepsy Group, University of Liverpool, Room 2.28, Clinical Sciences Centre, University Hospital Aintree, Lower Lane, Liverpool, L9 7LJ, UK. ellie.clayden@icloud.com.

Editorial group: Cochrane Epilepsy Group. Publication status and date: Edited (no change to conclusions), published in Issue 2, 2014. Review content assessed as up-to-date: 1 May 2013.

Citation: Hancock EC, Osborne JP, Edwards SW. Treatment of infantile spasms. *Cochrane Database of Systematic Reviews* 2013, Issue 6. Art. No.: CD001770. DOI: 10.1002/14651858.CD001770.pub3.

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Analysis 9.1. Comparison 9 Vigabatrin versus hormonal treatment, Outcome 1 Cessation of spasms.

Review: Treatment of infantile spasms

Non tuberous sclerosis

Comparison: 9 Vigabatrin versus hormonal treatment

Outcome: I Cessation of spasms

Study or subgroup	Vigabatrin	Hormonal treatment	Peto Odds Ratio	Weight	Peto Odds Ratio	
	n/N	n/N	Peto,Fixed,95%	CI	Peto,Fixed,95% Cl	
Vigevano 1997	11/23	14/19		29.1 %	0.35 [0.10, 1.19]	
Lux 2004	28/52	40/55		70.9 %	0.45 [0.20, 0.98]	
Askalan 2003	6/6	3/3			Not estimable	
Total (95% CI)	81	77	-	100.0 %	0.42 [0.21, 0.80]	
Total events: 45 (Vigabat	rin), 57 (Hormonal t	treatment)				
Heterogeneity: $Chi^2 = 0$.II, df = I (P = 0.75	5); I ² =0.0%				
Test for overall effect: Z	= 2.61 (P = 0.0092)					
Test for subgroup differe	nces: Not applicable					
				1 1		
			0.1 0.2 0.5 1 2	5 10		

Hormonal Treatment Vigabatrin

Analysis 9.2. Comparison 9 Vigabatrin versus hormonal treatment, Outcome 2 Resolution of EEG.

Review: Treatment of infantile spasms

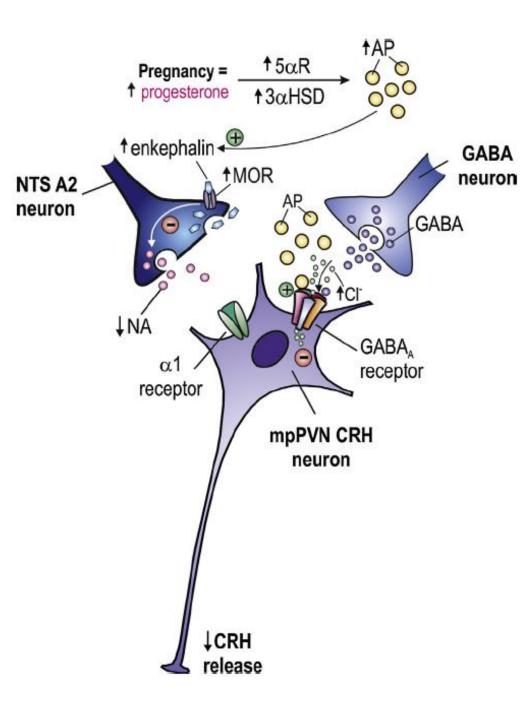
Non tuberous sclerosis

Comparison: 9 Vigabatrin versus hormonal treatment

Outcome: 2 Resolution of EEG

Study or subgroup	Vigabatrin	Hormonal treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto,Fixed,95% CI		Peto,Fixed,95% Cl
Askalan 2003	6/6	3/3			Not estimable
Lux 2004	20/28	26/32		63.8 %	0.58 [0.18, 1.91]
Vigevano 1997	4/11	11/14	← ∎	36.2 %	0.18 [0.04, 0.90]
Total (95% CI)	45	49		100.0 %	0.38 [0.15, 0.99]
Total events: 30 (Vigabat	rin), 40 (Hormonal	treatment)			
Heterogeneity: Chi ² = 1.	.30, df = 1 (P = 0.25	5); I ² =23%			
Test for overall effect: Z	= 1.97 (P = 0.049)				
Test for subgroup differe	nces: Not applicable	2			
			0.1 0.2 0.5 1 2 5 10		
		H	Iormonal Treatment Vigabatrin		

The hypothalamo-pituitary-adrenal axis (HPA)


"Stress" :

Corticotropin releasing hormone CRH

ACTH

Adrenal cortex glucocorticoids (cortisol)

Brunton PJ, J Steroid Biochemistry and Molecular Biology, 2015

Modulation of CRH releasing neuron

- Noradrenergic A2 neurons (brainstem): excitatory
- Allopregnanolone / encephalin can stimulate opoid receptor MOR
- MOR inhibits release NA
- Inhibitory GABA neuron

Allopregnalolone : neuro- steroid

direct action on steroid receptorsmodulation of GABA-A receptors

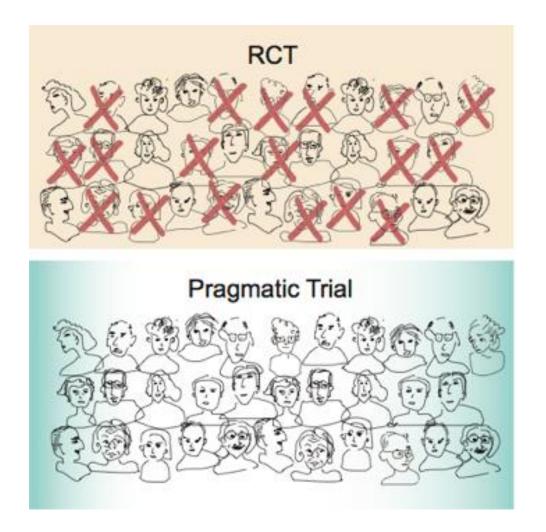
Pathophysiology of Massive Infantile Spasms: Perspective on the Putative Role of the Brain Adrenal Axis

Tallie Z. Baram, MD, PhD Department of Neurology, University of Southern California, and Division of Neurology, Childrens Hospital Los Angeles, Los Angeles, CA.

CRH injection in rodents : potent convulsant CHR-R1 receptor in amygdala hippocampus

Time specific (young animals more prone than adult animals) R1 receptors disappear

ACTH


-effect on melanocortin (MCR) Type 4 receptor in amygdala: Stops CRH release
-direct effect on steroid receptors (steroid dependent activity)
-indirect effect on adenenosine (second messenger)
-direct anticonvulsant effect (fragments ACTH)

(gluco)steroids

Hippocampus	Amygdala
7	¥ .
Corticotropin R Hormone (C ACTH	eleasing CRH)
Glucocortic	oids
(cortisol, corticos	terone)

BRAIN ADRENAL AXIS

ACTH / Steroids in other epilepsies

Treatment of electrical status epilepticus in sleep: A pooled analysis of 575 cases

*¹Bart van den Munckhof, *¹Violet van Dee, †Liora Sagi, ‡Roberto H. Caraballo, §Pierangelo Veggiotti, ¶Elina Liukkonen, #**Tobias Loddenkemper, **Iván Sánchez Fernández, ††Marga Buzatu, ‡‡§§¶¶##***Christine Bulteau, *Kees P. J. Braun, and *Floor E. Jansen

Treatment	OR (95% CI) Univariate (complete case)	OR (95% CI) Univariate (MI)	OR (95% CI) Multivariate (MI)	Improvement :
AED	Reference	Reference	Reference	
Benzodizzepines	2.2 (1.5-3.2)*	2.2 (2.0-2.5)*	2.1 (1.4–3.1)*	Cognitive and /or
Steroids	4.4 (2.9-6.7)*	4.4 (3.9-5.0)*	4.2 (2.7-6.5)*	EEG improvement
Surgery	9.8 (4.1-23.1)*	9.8 (7.5-12.6)*	8.6 (3.5-21.4)*	
Other	1.2(0.69-2.1)	1.2 (1.0-1.4)*	1.1 (0.6-2.0)	
Patient characteristics	. ,			
Malegender	1.2 (0.9-1.6)	1.2 (0.9-1.5)	1.4 (1.0-1.8)*	
Age at diagnosis	1.0(1.0-1.0)	1.0 (1.0-1.0)	1.0(1.0-1.0)	
Interval diagnosis—treatment	1.0(1.0-1.0)	1.0 (1.0-1.0)	1.0(1.0-1.0)	
Febrile seizures	1.2(0.7-2.1)	1.3 (0.7-2.3)	1.4(0.8-2.6)	
Abnormal development before ESES onset	0.6 (0.5-0.9)*	0.6 (0.5-0.8)*	0.6 (0.4-0.8)*	
CT/MRIabnormalities	0.8(0.6-1.1)	0.8 (0.6-1.1)	1.0 (0.7-1.4)	
CT/MRIabnormalities in nonsurgically treated patients	0.7 (0.5-1.0)*	0.7 (0.5-1.0)	1.0(0.7-1.4)	
Number of previous treatments	1.2(1.1–1.4)*	1.1 (0.9–1.3)	1.1 (0.9–1.0)	

Can ACTH therapy improve the long-term outcome of drug-resistant frontal lobe epilepsy?

Giuseppe Gobbi¹, Giulia Loiacono², Antonella Boni¹, Lucia Marangio³, Alberto Verrotti⁴

¹ Child Neurology Unit, IRCCS (Istituto delle Scienze Neurologiche di Bologna), Bellaria Hospital, Bologna

² Department of Paediatrics, University of Chieti, Chieti

³ Department of Paediatrics, Arcispedale S. Anna-University of Ferrara, Ferrara

⁴ Department of Paediatrics, University of Perugia, Perugia, Italy

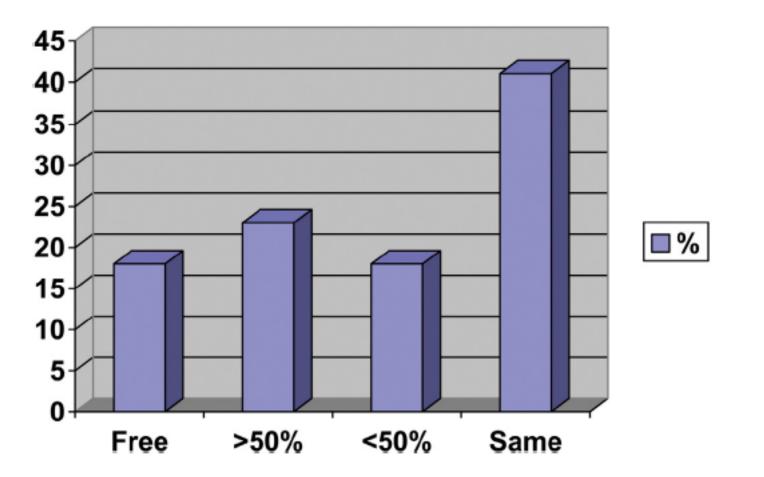
Patient	Sex	Age at onset of epilepsy (years)	Epilepsy duration (years)	Follow-up (years)	Seizure type	Age at start of ACTH	Short-term outcome	Medium-term outcome	Long- term outcome
1	м	12	6.2	14	Atypical absences, tonic versive	14 years, 8 months	Effective	Excellent	Excellent
2	м	11	5.8	11	Atypical absences, tonic versive, drop attacks	15 years, 9 months	Effective	Good	Excellent
3	F	4	4.2	6	Tonic, partial complex	4 years, 11 months	Effective	Excellent	Excellent
4	м	11	8.3	16	Atypical absences, tonic versive	17 years	Effective	Good	Excellent
5	м	3.5	2.6	5.5	Atypical absences, tonic versive, generalised tonic-clonic	4 years	Ineffective	Ineffective	Poor
6	м	4	5.6	11	Atypical absences, tonic versive, drop attacks	4 years, 6 months	Effective	Excellent	Excellent

The ACTH dose used was 0.01 mg/kg/day *i.m.* for 2 weeks in all patients, followed by tapering for 6 weeks,

Intravenous Methylprednisolone for Intractable Childhood Epilepsy

Kholoud H. Almaabdi MBBS, Rawan O. Alshehri MBBS, Areej A. Althubiti MBBS, Zainab H. Alsharef MBBS, Sara N. Mulla MBBS, Dareen S. Alshaer MBBS, Nouf S. Alfaidi MBBS, Mohammed M. Jan MBChB FRCPC*

Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia


Methylprednisolone :

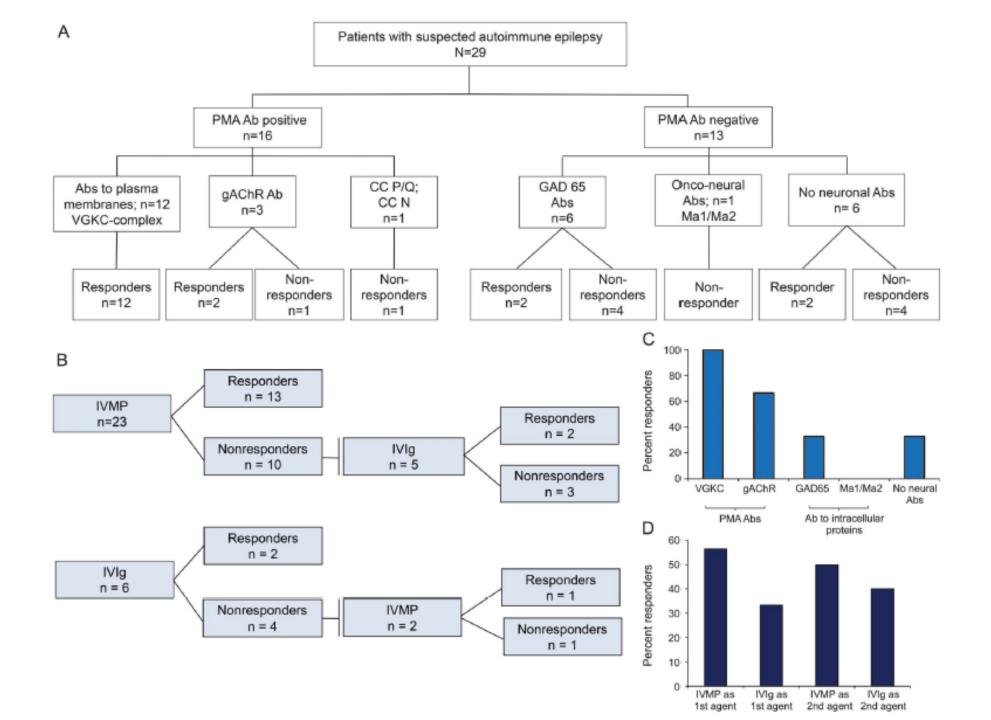
- Inhibits cytokine (prostaglandins)
- Inhibits T cells
- Decreases extravasation of immune cells into CNS
- Inhibits CRH release

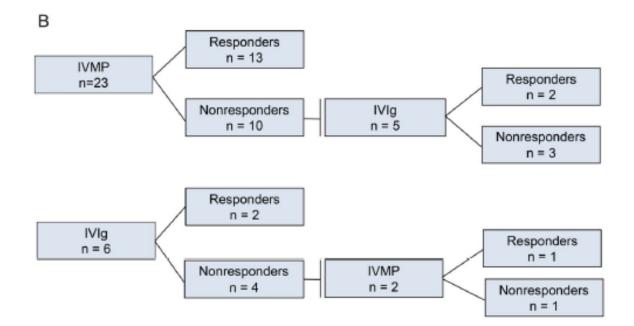
Methodology

IV Methylprednisolone 15 mg/kg/day for 3 days Followed by Oral prednisolone 1 mg/kg for 1week Then weaned over 2-8 weeks

Follow up 6 -24 months

45 % responders


FIGURE.


Seizure outcome at 6 months after the intravenous pulse of methylprednisolone shown in percentages of children achieving complete seizure control, >50% seizure reduction, <50% seizure reduction, or no change. (The color version of this figure is available in the online edition)

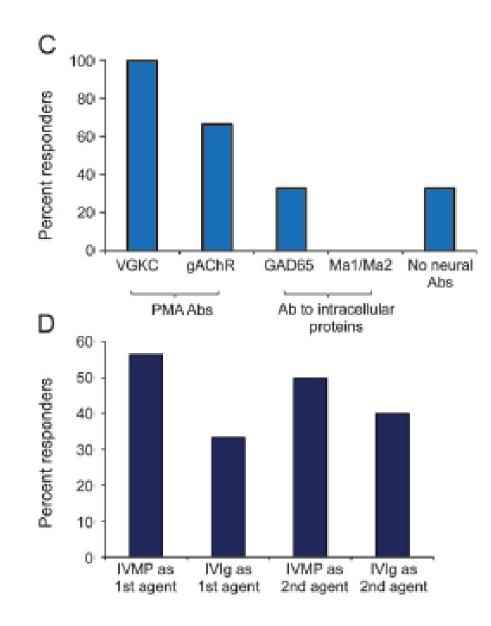
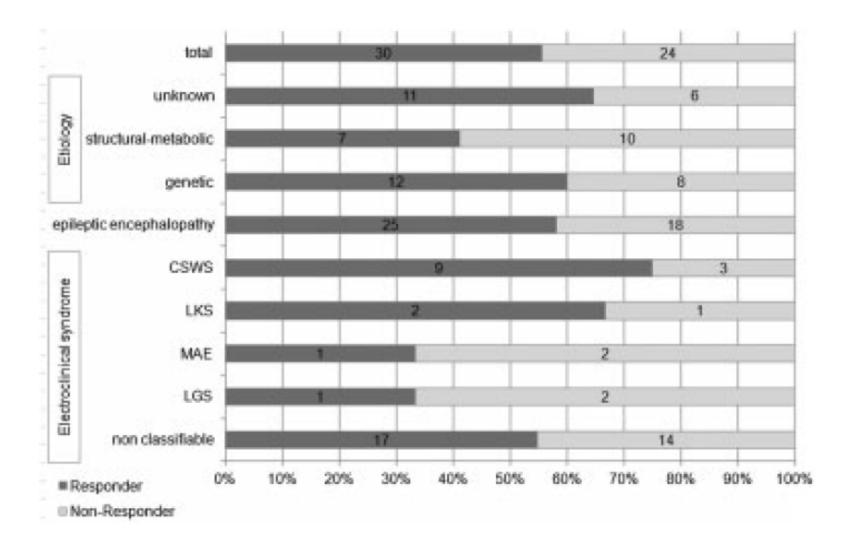
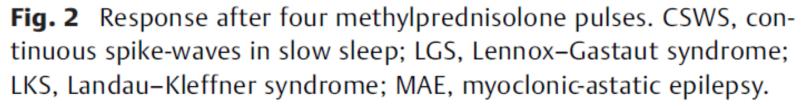
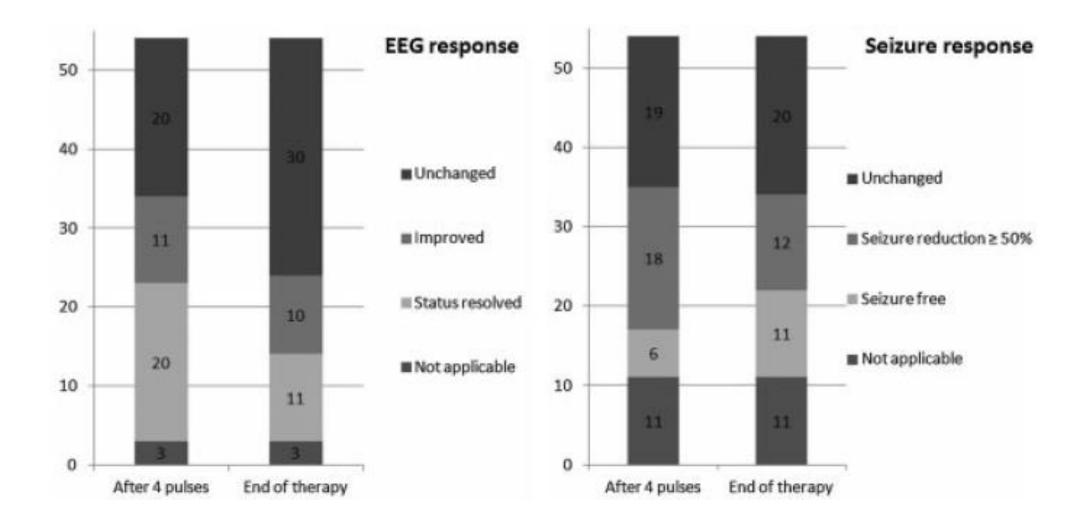

Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy

Figure 1 Clinical features suggestive of autoimmune epilepsy

- Acute to subacute onset (maximal seizure frequency ≤ 3 months)
- Multiple seizure types or faciobrachial dystonic seizures
- AED resistance
- Personal or family history (1st degree relative) of autoimmunity
- History of recent or past neoplasia
- Viral prodrome
- Evidence of CNS inflammation
 - CSF (elevated protein, pleocytosis, oligoclonal bands, + CSF index)
 - MRI (mesial temporal or parenchymal T2 hyperintensity)
 - Hypermetabolism on functional imaging (PET)
- Detection of neural autoantibody






Efficacy and Tolerability of Methylprednisolone Pulse Therapy in Childhood Epilepsies Other Than Infantile Spasms

Thomas Bast^{1,*} Sarah Richter^{2,*} Friedrich Ebinger³ Dietz Rating[§] Adelheid Wiemer-Kruel¹ Susanne Schubert-Bast⁴

Methodology	
Fixed : weekly MPR pulses 20 4days interval 4 cycles	Omg/kg/day for 3 days
Adjustable : Good effect : continu Later : every 3 or 4 w Relapse : intensificati	eeks

Original Article

Effectiveness of a hybrid corticosteroid treatment regimen on refractory childhood seizures and a review of other corticosteroid treatments

Dewi P. Bakker, Coriene E. Catsman-Berrevoets, Rinze F. Neuteboom*

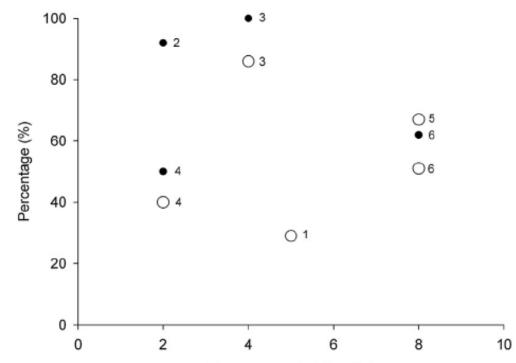
Erasmus University Hospital-Sophia Children's Hospital, The Netherlands

Methodology

Refractory epilepsy, no WEST, no Landau Kleffner

IV methylprednisolone 20/KG/day for 3 days 12 weeks oral prednisolone (0,5 mg/kg/day alternate days) Taper phase

Eur J Paed Neurol, 2015


Label	Author	Medication regimen	Number of patients	Treatment period (weeks)	Epileptic syndromes	Good response	Seizure free	Seizure free after therapy
1	Charuvanij ²²	ACTH, 5 w mean dosage 50 IU/d (15–100 IU/d)	21	5	LGS 18 (86%), UCF 3 (14%)		6 (29%)	2 (10%)
2	Kramer ²³	ACTH 2 w 40-100 IU/d or 110 IU/M ²	12	2	FOC 2 (17%), GEN 2 (17%), ME 8 (66%)	11 (92%)		
3	Oguni ²⁵	ACTH	22		MAE 22 (100%)	13 (59%)	8 (36%)	
4	Okumura ¹⁷	ACTH 0.01–0.015 mg/kg/d (1–1.5 IU/kg/d)	14	2-4	FLE 1 (7%), GEN 13 (93%)	14 (100%)	12 (86%)	5 (36%)
5	O'Regan ²⁴	ACTH, 2 w 0.5 mg/d (50 IU/d), if successful continued	10	2 or more	Unclassified 2 (20%), LGS 7 (70%), SMEI 1 (10%)	5 (50%)	4 (40%)	
6	Snead ²⁶	ACTH, 3 w 150 IU/M ² /d, until 8 w taper	18	8	Unclassified 18 (100%)		12 (67%)	6 (33%)
7	Yamatogi ¹⁹	ACTH 1-8 w 0.25-0.75 mg/d (=10-30 IU)	45	1-8	LGS 45 (100%)	28 (62%)	23 (51%)	13 (29%)
Α	Bast ⁴	Methylprednisolone, 3 d 20 mg/kg/d once a week	37	4 or more	LGS 3 (8%), MAE 3 (8%) UCF 31 (84%)	11 (30%)	4 (11%)	
В	Grosso ³⁰	Deflazacort, 0.75 mg/kg/d	16	24	FOC 6 (38%), GEN 7 (44%), LGS 3 (19%)	6 (38%)	0 (0%)	
С	Grosso ³⁰	Hydrocortisone, 4 w 10 mg/kg/d, 4 w 5 mg/kg/d, 4 w 2.5 mg/kg/d, 4 w 1 mg/kg/d, 8 w 1 mg/kg alternate day	13	24	FOC 5 (38%), GEN 6 (46%), LGS 2 (15%)	5 (38%)	1 (8%)	0 (0%)
D	Kramer ²³	Methylprednisolone 2–3 d 10–30 mg/kg/d, prednisone 4 w 2 mg/kg/d	10	4	GEN 5 (50%), FOC 2 (20%), ME 3 (30%)	3 (30%)		
Е	Kramer ²³	Prednisone 4 w 2–2.5 mg/kg/d	13	4	FOC 2 (15%), GEN 4 (31%), LGS 2 (15%), MAE 3 (23%), ME 2(15%)	5 (38%)		
F	Sevilla ²⁸	Methylprednisolone, 5 d 15 mg/kg/d once a month	12	12	FOC 6 (50%), GEN 6 (50%)	10 (83%)	2 (17%)	1 (8%)
G	Sinclair ¹⁸	Prednisone, 6 w 1 mg/kg/d, 6 w taper alternate day	26	8	ABS 7 (27%), LGS 10 (39%), ME 3 (12%), SMEI 6 (23%)	21 (81%)	16 (62%)	12 (46%)
н	Snead ²⁶	Prednisone, 4 w 3 mg/kg/d, 8 w 3 mg/kg alternate day, 4 w taper	16	16	Unclassified 16 (100%)	0 (0%)	0 (0%)	
I	Verhelst ²⁹	Dexamethasone, 3 d 0.5 mg/kg/d once a month	6	12	Unclassified 6 (100%)	1 (17%)	0 (0%)	
J	Verhelst ²⁹	Hydrocortisone, 20 mg/kg/d	5	24	Unclassified 4 (80%), LGS 1(20%)		4 (80%)	1 (20%)
K	You ²⁷	Prednisolone, 6 w 2 mg/kg/d, 2 w taper	38	8	GEN 2 (5%), LGS 32 (84%), MAE 4 (11%)	30 (79%)	24 (63%)	6 (16%)
L	Our patients	Methylprednisolone 3 d 20 mg/kg, prednisolone 12 w 0.5 mg/kg/d alternate day	21	12	Unclassified 14 (64%), FOC 1 (5%), MAE 4 (18%), ME 1 (5%), PAN 1 (5%)	9 (43%)	6 (29%)	1 (5%)

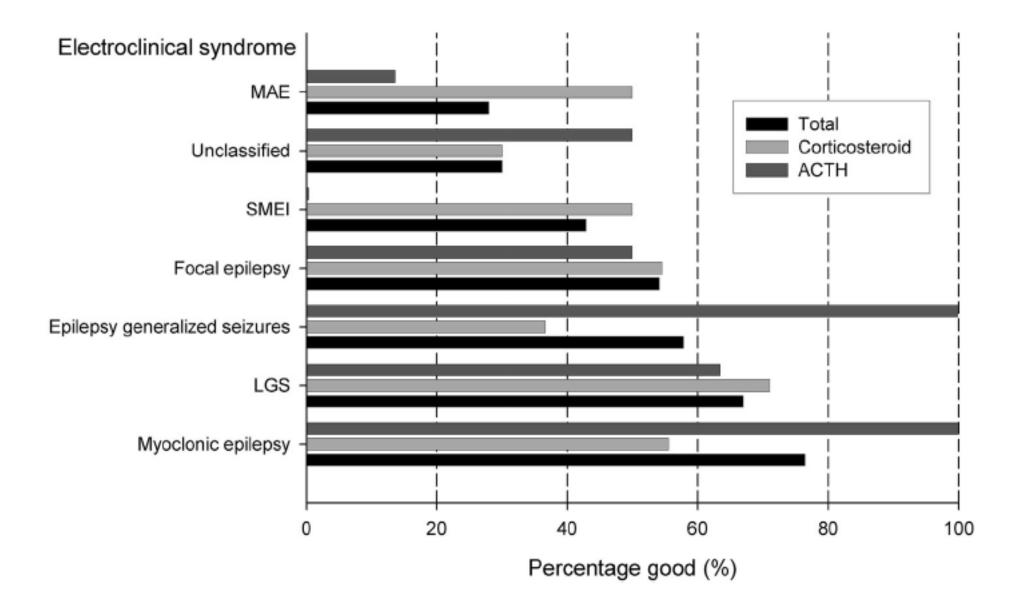
Abbreviations: IU international units; d, day; w, week; m, month; ABS atypical absence epilepsy; CSWS; generalized epilepsy with continuous spike-wave during sleep; FLE frontal lobe epilepsy; FOC epilepsy with focal seizures; GEN epilepsy with generalized seizures; LGS, Lennox—Gastaut syndrome; MAE myoclonic atonic epilepsy; ME, myoclonic epilepsy; PAN, panayiotopoulos epilepsy; SMEI severe myoclonic epilepsy of infancy.

Label	Author	Medication regimen	Number of patients	Treatment period (weeks)	Epileptic syndromes	Good response	Seizure free	Seizure free after therapy
1	Charuvanij ²²	ACTH, 5 w mean dosage 50 IU/d (15–100 IU/d)	21	5	LGS 18 (86%), UCF 3 (14%)		6 (29%)	2 (10%)
2	Kramer ²³	ACTH 2 w 40-100 IU/d or 110 IU/M ²	12	2	FOC 2 (17%), GEN 2 (17%), ME 8 (66%)	11 (92%)		
3	Oguni ²⁵	ACTH	22		MAE 22 (100%)	13 (59%)	8 (36%)	
4	Okumura ¹⁷	ACTH 0.01–0.015 mg/kg/d (1–1.5 IU/kg/d)	14	2-4	FLE 1 (7%), GEN 13 (93%)	14 (100%)	12 (86%)	5 (36%)
5	O'Regan ²⁴	ACTH, 2 w 0.5 mg/d (50 IU/d), if successful continued	10	2 or more	Unclassified 2 (20%), LGS 7 (70%), SMEI 1 (10%)	5 (50%)	4 (40%)	
6	Snead ²⁶	ACTH, 3 w 150 IU/M ² /d, until 8 w taper	18	8	Unclassified 18 (100%)		12 (67%)	6 (33%)
7	Yamatogi ¹⁹	ACTH 1-8 w 0.25-0.75 mg/d (=10-30 IU)	45	1-8	LGS 45 (100%)	28 (62%)	23 (51%)	13 (29%)

ACTH

а

Treatment period (weeks)


Label	Author	Medication regimen	Number of patients	Treatment period (weeks)	Epileptic syndromes	Good response	Seizure free	Seizure free after therapy
А	Bast ⁴	Methylprednisolone, 3 d 20 mg/kg/d once a week	37	4 or more	LGS 3 (8%), MAE 3 (8%) UCF 31 (84%)	11 (30%)	4 (11%)	
В	Grosso ³⁰	Deflazacort, 0.75 mg/kg/d	16	24	FOC 6 (38%), GEN 7 (44%), LGS 3 (19%)	6 (38%)	0 (0%)	
С	Grosso ³⁰	Hydrocortisone, 4 w 10 mg/kg/d, 4 w 5 mg/kg/d, 4 w 2.5 mg/kg/d, 4 w 1 mg/kg/d, 8 w 1 mg/kg alternate day	13	24	FOC 5 (38%), GEN 6 (46%), LGS 2 (15%)	5 (38%)	1 (8%)	0 (0%)
D	Kramer ²³	Methylprednisolone 2–3 d 10–30 mg/kg/d, prednisone 4 w 2 mg/kg/d	10	4	GEN 5 (50%), FOC 2 (20%), ME 3 (30%)	3 (30%)		
E	Kramer ²³	Prednisone 4 w 2–2.5 mg/kg/d	13	4	FOC 2 (15%), GEN 4 (31%), LGS 2 (15%), MAE 3 (23%), ME 2(15%)	5 (38%)		
F	Sevilla ²⁸	Methylprednisolone, 5 d 15 mg/kg/d once a month	12	12	FOC 6 (50%), GEN 6 (50%)	10 (83%)	2 (17%)	1 (8%)
G	Sinclair ¹⁸	Prednisone, 6 w 1 mg/kg/d, 6 w taper alternate day	26	8	ABS 7 (27%), LGS 10 (39%), ME 3 (12%), SMEI 6 (23%)	21 (81%)	16 (62%)	12 (46%)
н	Snead ²⁶	Prednisone, 4 w 3 mg/kg/d, 8 w 3 mg/kg alternate day, 4 w taper	16	16	Unclassified 16 (100%)	0 (0%)	0 (0%)	
I	Verhelst ²⁹	Dexamethasone, 3 d 0.5 mg/kg/d once a month	6	12	Unclassified 6 (100%)	1 (17%)	0 (0%)	
J	Verhelst ²⁹	Hydrocortisone, 20 mg/kg/d	5	24	Unclassified 4 (80%), LGS 1(20%)		4 (80%)	1 (20%)
K	You ²⁷	Prednisolone, 6 w 2 mg/kg/d, 2 w taper	38	8	GEN 2 (5%), LGS 32 (84%), MAE 4 (11%)	30 (79%)	24 (63%)	6 (16%)
L	Our patients	Methylprednisolone 3 d 20 mg/kg, prednisolone 12 w 0.5 mg/kg/d alternate day	21	12	Unclassified 14 (64%), FOC 1 (5%), MAE 4 (18%), ME 1 (5%), PAN 1 (5%)	9 (43%)	6 (29%)	1 (5%)

Abbreviations: IU international units; d, day; w, week; m, month; ABS atypical absence epilepsy; CSWS; generalized epilepsy with continuous spike-wave during sleep; FLE frontal lobe epilepsy; FOC epilepsy with focal seizures; GEN epilepsy with generalized seizures; LGS, Lennox–Gastaut syndrome; MAE myoclonic atonic epilepsy; ME, myoclonic epilepsy; PAN, panayiotopoulos epilepsy; SMEI severe myoclonic epilepsy of infancy.

100 -₿^FG OC 80 •κ Percentage (%) ОК ΟG 60 ●L < 40 • E • B • A+D 0L 🗲 20 F+I ОA ОC н В 0 Ð Ð 10 20 15 5 0

Treatment period (weeks)

Corticosteroid

Corticosteroids including ACTH for childhood epilepsy other than epileptic spasms

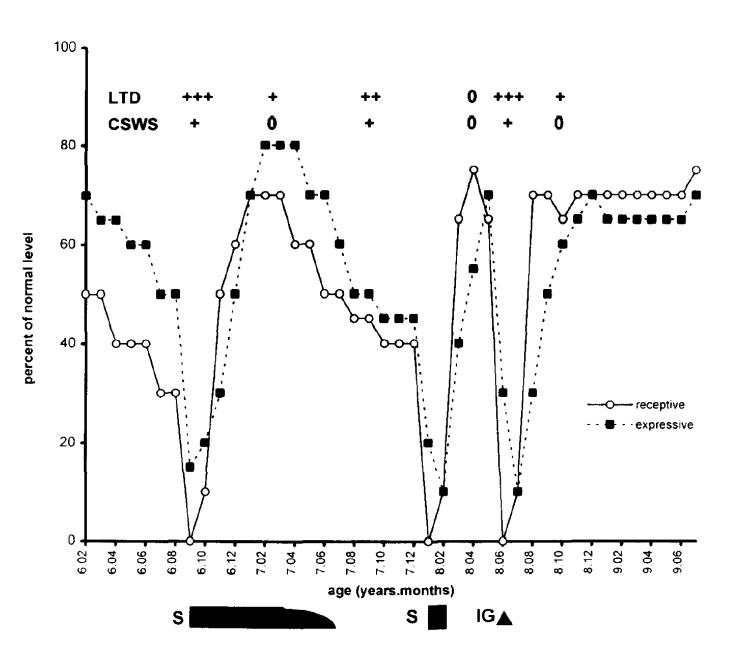
Vishal Mehta¹, Colin D Ferrie², J Helen Cross^{3,4}, Gayatri Vadlamani²

¹Department of Paediatrics, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK. ²Department of Paediatric Neurology, Leeds General Infirmary, Leeds, UK. ³UCL Institute of Child Health, London, UK. ⁴The Neville Childhood Epilepsy Centre, Lingfield, UK

Contact address: Gayatri Vadlamani, Department of Paediatric Neurology, Leeds General Infirmary, Clarendon Wing, Belmont Grove, Leeds, LS2 9NS, UK. gayatri.vadlamani@nhs.net. nagayatri@googlemail.com.

Editorial group: Cochrane Epilepsy Group.

Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 6, 2015. Review content assessed as up-to-date: 1 August 2014.


Citation: Mehta V, Ferrie CD, Cross JH, Vadlamani G. Corticosteroids including ACTH for childhood epilepsy other than epileptic spasms. *Cochrane Database of Systematic Reviews* 2015, Issue 6. Art. No.: CD005222. DOI: 10.1002/14651858.CD005222.pub3.

Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

What about IVIG ?

Successful Use of Intravenous Immunoglobulins in Landau-Kleffner Syndrome

Lieven G. Lagae, MD, PhD*, Jon Silberstein, MD*, Phillippe L. Gillis, MD[†], and Paul J. Casaer, MD, PhD*

Intravenous Immunoglobulins in refractory epilepsy

- Inhibits inflammatory cytokines
- Increases NK cell activity
- Provides anti-idiotypic antibodies

Innate Immunity

Binds

activated C1q,

C3b, C4 &

C3a, C5a

Regulates

receptor

migration

cytokines

IL-6, IL-2,

IFN-y)

Inhibits

dendritic cell

expression &

inflammatory

(TNF-α, IL-1,

- Inhibits opsonization
- Inhibits phagocytosis via blocking Fc receptors, induction of FcyRIIb
- Modulates cell migration (ICAM-I, VCAM-I)
- Reduces NO production
 from neutrophils
- Inhibits monocyte
 activation
- Binds activating and inhibitory FcyR
- Inhibits ADCC

Adaptive Immunity

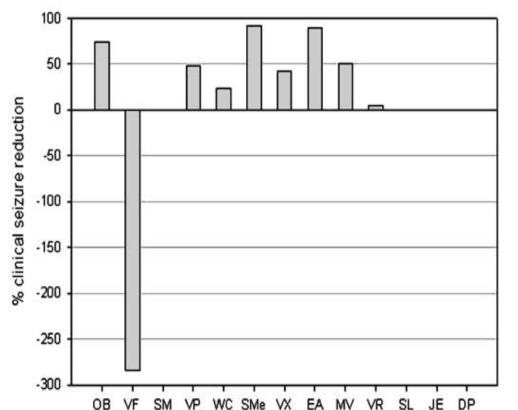
- Neutralizes microbial superantigen triggers
- Augments regulatory T cell expression and activation
- Provides antibodies against TCR β chain, CD4, CD8, HLA, chemokine receptors
- Fc-mediated inhibition of B cells
- Inhibits IL-6 production required for antibody secretion by plasma cells
- Induces apoptosis of autoreactive B cells
- Neutralizes autoantibodies & immune complexes
- Increases autoinantibody catabolism via FcRn
- Provides passive immunity to combat microbial triggers

Wong and White, Clin REV Allerg Immunol, 2015

Reference, Study Type	No. Patients	Ages	Type(s) of Seizures	Epilepsy Syndrome(s)	Follow-up Period	Outcome
Ariizumi et al., 1987, open-label study ⁵¹	11	3-12 months	Not specified	WS	3-6 months	7 (63.6%) seizure free, 1 (9%) mild improvement, and 3 (27.2%) no response
Van Engelen et al., 1994 ³⁶	15	1.0-6.0 years	Infantile spasms, axial tonic, atypical absences, atonic	WS, LGS	3 months	Reduction in clinical seizures by 70%
Van Rijckevorsel- Harmant et al., 1994, double-blind trial ²³	(n = 61) 43 on IVIG; 18 on placebo	2-46.7 years	Partial, generalized	WS, LGS, LRE	6 months	No significant change in seizure frequency from treatment. In patients with partial epilepsy, a 50% reduction in seizure frequency was seen in 19 (44.2%) patients in the treatment group versus 2 (11.1%) patients in the placebo group
furkay et al., 1996, open-label study ⁵²	6	5-13 years	Not available	Multiple	Not specified	Marked improvement in 4 (66.6%) and partial in 2 (33.3%)
llum et al., 1998, single-blind trial ⁵³	10	4-14 years	Not specified	LGS	0.5 months	2 (20%) children seizures reduced 42%-100% with improvement of the intellectual function
Fayad et al., 1997 ⁵⁴	11	2.5-8 years	Response of aphasia and not of seizures studied	LKS	5-72 months	Only 2 (18.1%) of the 11 patients had sustained and marked improvements
Espinosa-Zacarias et al., 2002, open- label study ⁵⁵	5	Not detailed	Not specified	WS, LGS	14 months	Satisfactory response was seen with IVIG add-on therapy in 5 (100%) patients with WS and LGS
Bingel et al., 2003, open-label study ⁵⁶	5	4.5-11.5 years	Infantile spasms, partial-onset tonic generalized myoclonic, tonic, atypical generalized, absence, juvenile spasms, absence, complex partial	LGS	12 months	4 (80%) patients had >50% to 92% seizure reduction
Billiau et al., 2007, open-label study ²⁹	13	1.6-25.8 years	Infantile spasms, focal, tonic-clonic, myoclonic, atypical and typical absence, clonic and tonic	WS, LGS, SFE	3-6 weeks	Four (30.7%) patients had seizure frequency reduced by 50% patients and by 25% to 50% in another 3 (23%) patients
Kramer et al., 2009, open-label ⁵⁷	9	Not clearly indicated	Did not study clinical seizures	ESES	1 months	Three of 9 (33%) had a >75% decrease in spike wave index, or >75% improvement of encephalopathy
Aikati et al., 2010, open-label study ³⁰	37	2-20 years	Partial, generalized	WS, LGS, LRE	15 (1-56) months	43% had a >50% decrease in seizure frequency, and 15% became seizure-free
Bello-Espinosa et al., current study	27	3-17 years		WS, LGS, SFE, SMFE, SGE, MAE, DS, CSWS	38 (9-101) months	

Intravenous Immunoglobulins in refractory epilepsy

- Inhibits inflammatory cytokines
- Increases NK cell activity
- Provides anti-idiotypic antibodies

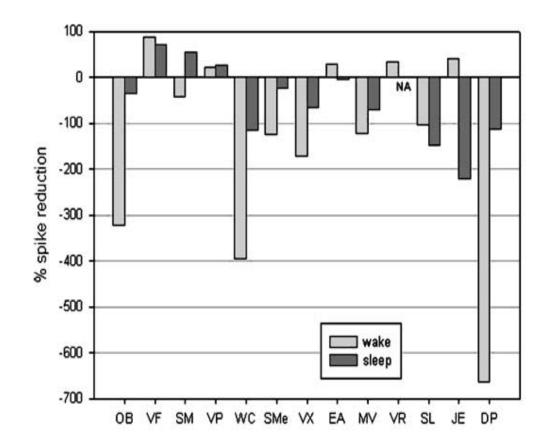

12 studies
1 RCT 5-37 patients
Variable methodology (dose, cycles, duration, follow up)

"Responders" : variable 0 - 66%

Bello-Espinova et al, Paed Neurol, 2015

Intravenous Immunoglobulins in Refractory Childhood-onset Epilepsy: Effects on Seizure Frequency, EEG Activity, and Cerebrospinal Fluid Cytokine Profile

*†An D. Billiau, ‡Peter Witters, ‡Berten Ceulemans, §Ahmad Kasran, †Carine Wouters, and ‡Lieven Lagae


Seizure frequency

4/13 > 50% decrease

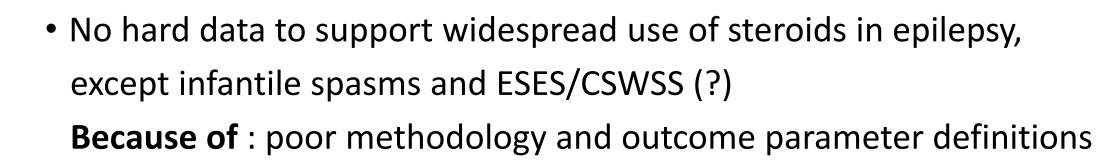
7/13 > 25% decrease

No relationship with duration or etiology

Effect on EEG

CSF cytokines

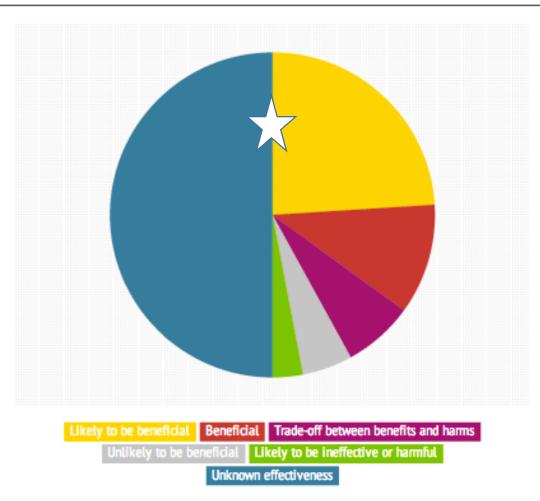
TABLE 3.	Cytokine levels in CSF and plasma before and
	after IVIG treatment


	CSF (m (range)) (Plasma (median (range)) (pg/ml)		
	Before	After	Before	After	
IL-8	` /	15.2 (6.8–49.9) ^a	0 (0-6.8)	1.55 (0-11.8)	
IL-6	$1.8 (1-2.5)^{a}$	$2(0-4.2)^{NS}$	1.1 (0-3.8)	1.9 (0-14.2)	
IL-10	0 (0-2.1)	0 (0-1.9)	0 (0-2.3)	0 (0-6)	
IL-12	0 (0–7.1)	0 (0–2.9)	0 (0-4.6)	0 (0-4.5)	

 $^{a}p < 0.05.$

IL-6 and IL-8 detectable in all patients, and higher in CSF than in serum : local production

Pretreatment IL-8 correlated inversely with clinical improvement after IVIG



"conclusions"

 Not specific / not targeted enough : 'like a bull in a china shop' Better understanding immunological processes needed

Effectiveness of medical treatments

Effectiveness of 3,000 treatments as studied in randomized trials, as collected by Clinical Effectiveness. This does NOT indicate how often treatments are used.

British Medical Journal