

Genetics of Intellectual Disability and Autism: possibilities and limitations

Prof F Lucy Raymond Department of Medical Genetics Cambridge Institute for Medical Research University of Cambridge <u>flr24@cam.ac.uk</u>

ID definition

Definition: intellectual disability

Intellectual disability means a significantly reduced ability to understand new or complex information and to learn and apply new skills (impaired intelligence). This results in a reduced ability to cope independently (impaired social functioning), and begins before adulthood, with a lasting effect on development.

Disability depends not only on a child's health conditions or impairments but also and crucially on the extent to which environmental factors support the child's full participation and inclusion in society.

The use of the term intellectual disability in the context of the WHO initiative "Better health, better lives" includes children with autism who have intellectual impairments. It also encompasses children who have been placed in institutions because of perceived disabilities or family rejection and who consequently acquire developmental delays and psychological problems.

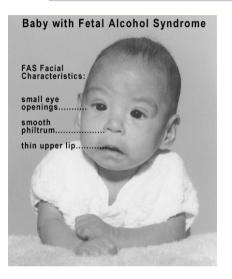
- Intellectual disability is common and affects 1-2 % population
- Developmental delay is the commonest referral reason to paediatric clinical genetics services
- Etiology is poorly understood
- In some families there is a clear X linked inheritance pattern where males are affected and it is inherited through unaffected or mildly affected females
- <90% of cases there is no family history

IQ has a normal distribution but IQ <50 presence of ٠ additional group of cases with ID Culturofamilial Organic 200 IQ Score 150 35 85 130 100 115 70 Standard Deviation -+2 -2 +1-1

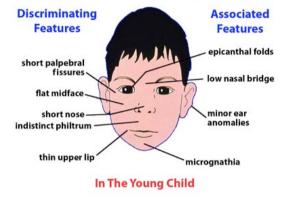
Males excess 1.3:1 Penrose LS 1938 1280 inpatients

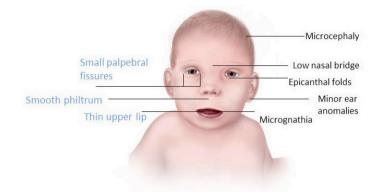
Severity	IQ	Males	Females	M:F
Profound	<20	1166	964	1.21
Severe	20-34	835	610	1.37
Moderate	35-49	833	619	1.35
Mild	50-70	1130	841	1.34
Borderline/low normal	>70	180	107	1.68

• Replicated in multiple studies internationally

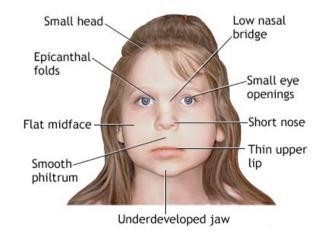

South Carolina Institutions Anderson et al 1996

	Age < 20 Years	Age > 19 Years
Causation	IQ < 50	IQ < 50
💳 1 Chromosomal	123 (10.5)*	568 (15.1)
2 Single gene	113 (9.6)	238 (6.3)
3 Multifactorial	35 (3.0)	34 (0.9)
4 Culturofamilial	63 (5.4)	108 (2.9)
5 Known syndrome	30 (2.6)	55 (1.5)
6 Other genetic	10 (0.9)	45 (1.2)
7 Injury, prenatal	3 (0.3)	17 (0.5)
8 Injury, perinatal	69 (5.9)	153 (4.1)
9 Injury, postnatal	30 (2.6)	76 (2.0)
10 Infection, prenatal	17 (1.4)	44 (1.2)
11 Infection, perinatal	15 (1.3)	12 (0.3)
12 Infection, postnatal	53 (4.5)	230 (6.1)
13 Chemical, prenatal	24 (2.0)	12 (0.3)
14 Chemical, perinatal	3 (0.3)	17 (0.5)
15 Chemical, postnatal	1 (0.1)	15 (0.4)
—16 Prematurity	111 (9.4)	91 (2.4)
17 Other environmental	9 (0.8)	12 (0.3)
□18 Unknown	467 (39.7)	2046 (54.2)
Total	1176†	3773


Factor that influence intellectual development


- Environmental
 - Prenatal, perinatal and postnatal infections (rubella, CNV, measles, toxoplasmosis and sepsis)
 - Drug exposure (fetal alcohol, valproate)
 - Diet (PKU, inborn errors of metabolism)
 - Prematurity
- Genetics variation
 - High penetrant aberrations of genetic material
 - Chromosomal anomalies trisomy 21, deletions
 - Copy Number Variants
 - Single gene defects
 - Genetic modifiers of disease severity
 - Culturofamilial factors e.g. parental IQ is a strong predictor within the normal range
 - Polygenic
 - Genetics modifiers of monogenic disease

Fetal Alcohol



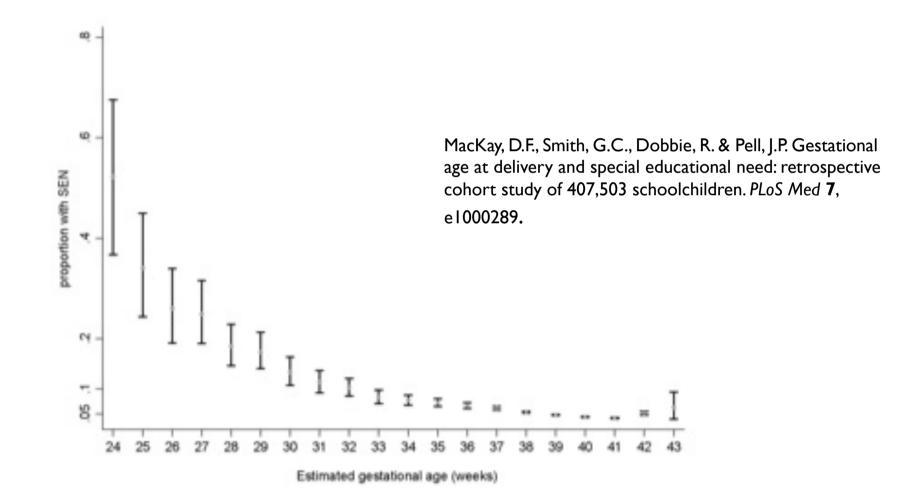
Faces in Fetal Alcohol Syndrome

Toxin during key stages of development Generally affects all organs Characteristic face Poor concentration Poor intellectual development Poor growth

Photomontage Fetal alcohol

www.qooqle.co.uk/imgres?imgurl=http://www.aafp.org/afp/2005/0715/afp20050715p279-f2.jpq&imgrefurl=http://www.aafp.org/afp/2005/0715/p279.html&h=454&w=550&tbnid=nHIP2a9enr_jQM:&zoom=1&docid=LNtL6HeS7b78HM&ei=czi3VLbtF8uk7AaYo4DqBw&tbm=isch&ved=OCEMQMyqVMBU

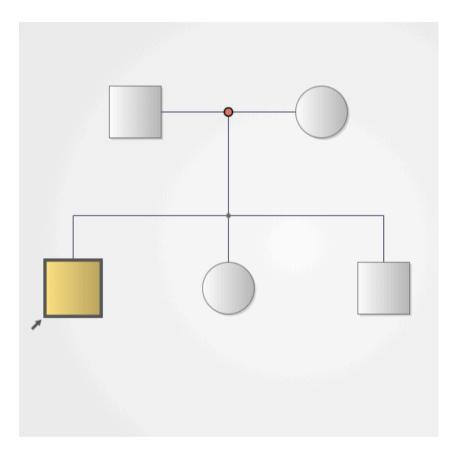
Fetal Valproate


Spina bifida 30X population risk

Clinical features: epicanthic folds; infraorbital groove; medial deficiency of the eyebrows; flat nasal bridge; short nose with anteverted nares;

smooth or shallow philtrum; long thin upper lip; thick lower lip;

small, downturned mouth; spina bifida; cardiac malformations; neurodevelopmental delay


Special educational need as a function of gestation

Empiric recurrence risks (IQ <50)

Reference	Male IP			Female IP		
	Brother	Sister	All sibs	Brother	Sister	All sibs
Turner et al 1971			2-9%			3.5-4%
Bundey et al 1974	6.7%	3.2%	5%	4.4%	6.3%	5.4%
Herbst et al 1982	6%	2.3%	4.3%	2.9%	5.6%	4.2%
Bundey et al 1986	10%	5%	7.5%			
Costeff et al 1987	14%	14%	14%	8.5%	9.6%	9.2%
	6-14%	2-14%		3-8%		

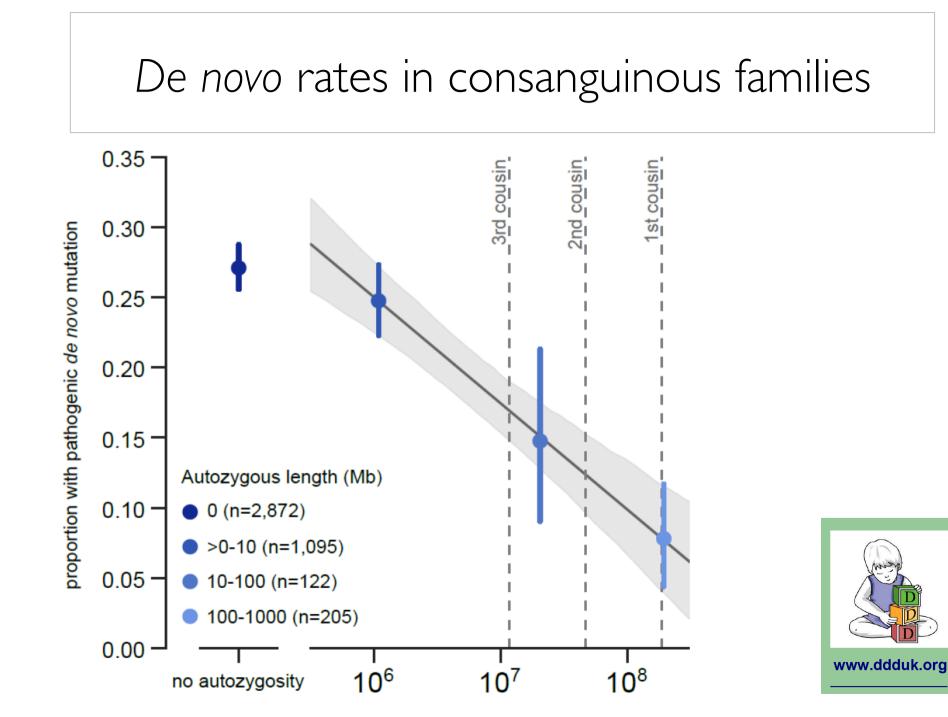
Mechanism of Disease

- Environmental
- Genomics CNV abnormality
- X linked recessive
- Autosomal recessive
- De novo autosomal dominant

Population Genetics

- Frequency of a disease in the population depends on
 - New mutation rate
 - Reproductive lethality
 - Sustainability of the disease in the population
 - Degree of relatedness of parents
- Familial conditions tend to be those that do not affect fertility
- Conditions that do affect fertility tend to be new mutations or recessive where parents are unaffected

Is the male excess due to X linked disease


- ARX data 6.6% mutation in families which were research families and phenotypically variable with syndromic and non-syndromic (3.5-12.1 95%CI)
- 0.13% in sporadic males with non-syndromic disease (</= 0.45)
- If the males excess is due to XLMR then mutations should be 1.6% in sporadic cohort if the 30% male excess is due to XLMR
- Observed rates are more in keeping with 10% of male excess is XLID

European Journal of Human Genetics (2004) 12, 689–693 © 2004 Nature Publishing Group All rights reserved 1018-4813/04 \$30.00 www.nature.com/eihg

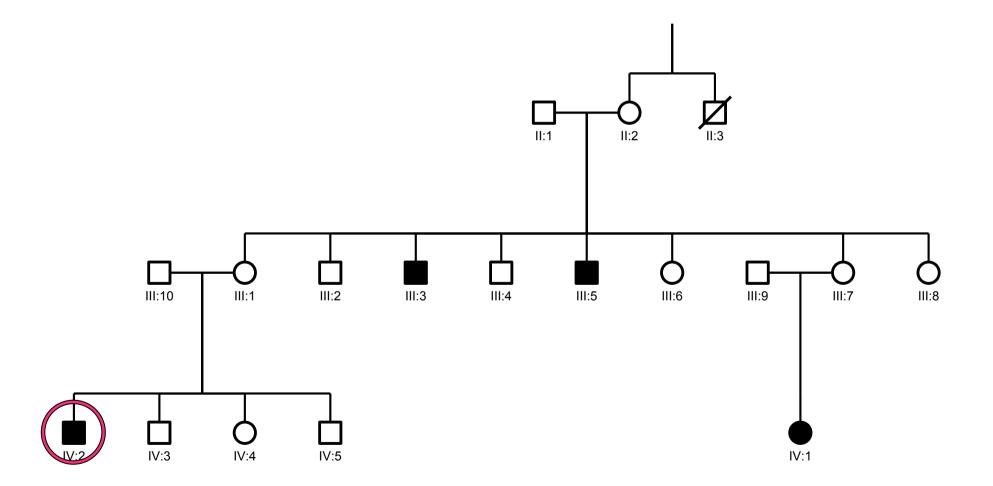
NEWS AND COMMENTARY

Monogenic X-linked mental retardation: Is it as frequent as currently estimated? The paradox of the ARX (Aristaless X) mutations

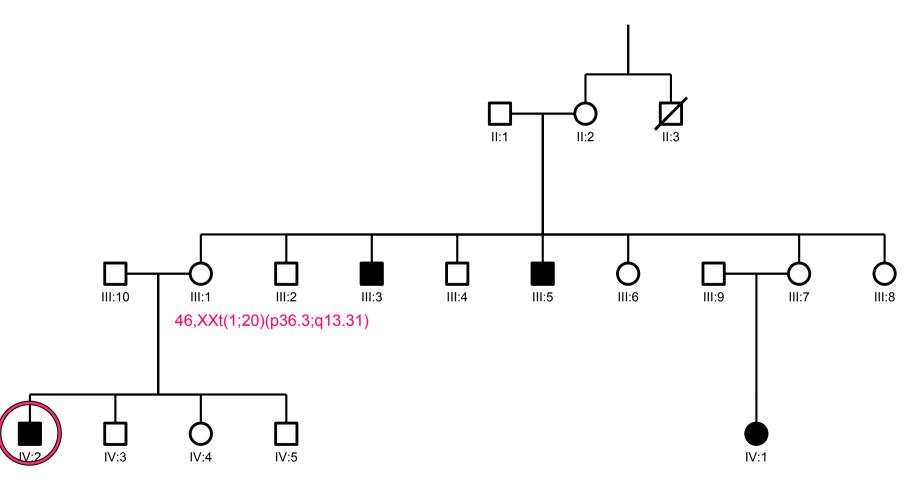
Jean-Louis Mandel^{*,1,3} and Jamel Chelly²

Restoring reproductive confidence in families with X-linked intellectual disability by finding the causal mutation

Carrier status Knowledge	No. women	Reproductive Years *	Women with children (%)	Women with no children (%)	Sons (no. affected)	Daughters	Offspring/ reproductive Year [‡]
At risk	48	673	16 (33)	32 (66)	8(2)	17#	1 in 27
Not a Carrier	23	123	18(78)	5 (21)	11(0)	7 §	1 in 6
Carrier	19	181	16(84)	3 (16)	11(2)	13 [©]	1 in 7

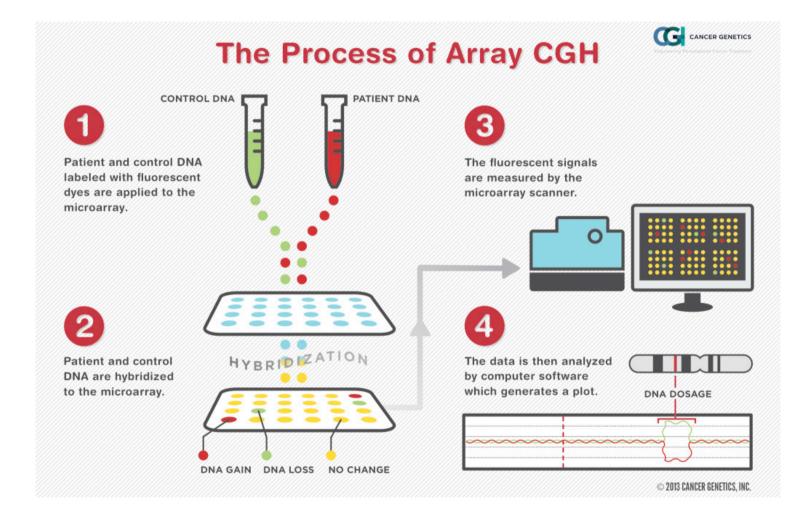

[‡] **average rate in NSW = 1 in 11**; [†] for differences pre and post tests, X² =20.67, df 2, p< .0005; [§] plus 4 pregnancies, sex unknown; [©] plus 1 pregnancy, sex unknown

G Turner et al Clin Genet 2008 73:188-90

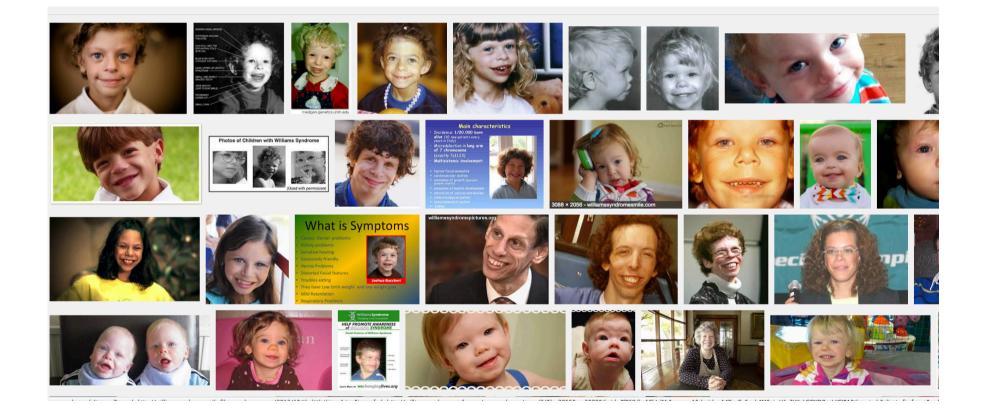

Investigation of a child with intellectual disability

- Pedigree
- Karyotype
- Microarray analysis <4 Mb resolution
- X inactivation pattern
- Selective gene analysis for specific syndromes

X-linked intellectual disability ?



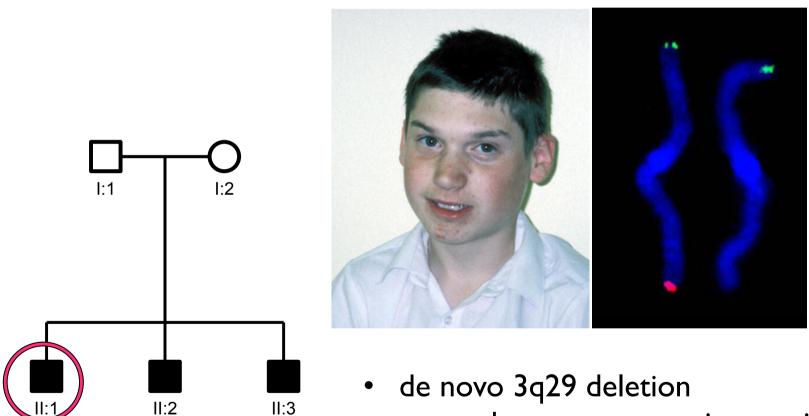
46,XY,der(1)t(1;20)(p36.3;q13.31)mat


lp36 syndrome

Array CGH

Williams syndrome

22q11 syndrome


Cardiac; thymus aplasia; immundeficiency; velopharngeal insufficiency; learning disability

Smith Magenis syndrome

Diagnosis of 3q29 deletion

• remember over ascertainment is common

Report

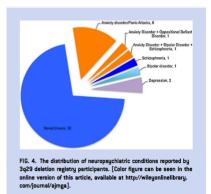
Am. J. Hum. Genet. 77:154-160, 2005

3q29 deletion genome first diagnostics

3q29 Microdeletion Syndrome: Clinical and Molecular Characterization of a New Syndrome

Lionel Willatt,¹ James Cox,¹ John Barber,² Elisabet Dachs Cabanas,² Amanda Collins Dian Donnai,⁴ David R. FitzPatrick,⁵ Eddy Maher,⁶ Howard Martin,¹ Josep Parnau,¹ Lesley Pindar,⁷ Jacqueline Ramsay,⁵ Charles Shaw-Smith,¹ Erik A. Sistermans,⁸ Michael Tettenborn,⁹ Dorothy Trump,⁴ Bert B. A. de Vries,⁸ Kate Walker,² and F. Lucy Raymond¹

RESEARCH ARTICLE

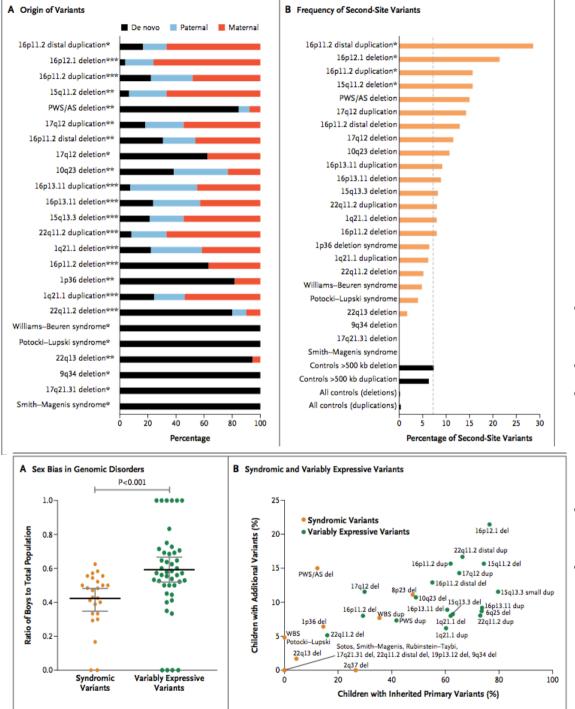

medical gen

Novel Features of 3q29 Deletion Syndrome: Results From the 3q29 Registry

Megan R. Glassford,¹ Jill A. Rosenfeld,² Alexa A. Freedman,³ Michael E. Zwick,^{1,4} Unique R Chromosome Disorder Support Group,⁵ and Jennifer G. Mulle^{1,3}*

¹Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia ²Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas ³Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia ⁴Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia ⁵Unique Rare Chromosome Disorder Support Group, Surrey, United Kingdom

Manuscript Received: 25 August 2015; Manuscript Accepted: 9 December 2015



Penetrance

- The likelihood that the genotype will predict the phenotype
- High penetrant variants
 - Rare
 - Mendelian disease
 - More likely to be de novo
- Reduced penetrance
 - Associated with disease rather than necessarily completely predictive or causative and also present in unaffected cases individuals
 - More likely to be inherited
 - Less severe

IQ has a normal distribution but IQ <50 presence of ٠ additional group of cases with ID Culturofamilial Organic 200 IQ Score-150 35 70 85 115 130 100 +2 Standard Deviation --2 +1-1 M

Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants

Santhosh Girirajan, M.B., B.S., Ph.D., Jill A. Rosenfeld, M.S., Bradley P. Coe, Ph.D., Sumit Parikh, M.D., Neil Friedman, M.B., Ch.B., Amy Goldstein, M.D., Robyn A. Filipink, M.D., Juliann S. McConnell, M.S., Brad Angle, M.D.,
Wendy S. Meschino, M.D., Marjan M. Nezarati, M.D., Alexander Asamoah, M.D., Kelly E. Jackson, M.S., Gordon C. Gowans, M.D., Judith A. Martin, M.D., Erin P. Carmany, M.S., David W. Stockton, M.D., Rhonda E. Schnur, M.D., Lynette S. Penney, M.D., Donna M. Martin, M.D., Ph.D., Salmo Raskin, Ph.D., Kathleen Leppig, M.D., Heidi Thiese, M.S., Rosemarie Smith, M.D., Erika Aberg, M.S., Dmitriy M. Niyazov, M.D., Luis F. Escobar, M.D., Dima El-Khechen, M.S., Kisha D. Johnson, M.S., Robert R. Lebel, M.D., Kiana Siefkas, M.S., Susie Ball, M.S., Natasha Shur, M.D., Marianne McGuire, M.S., Campbell K. Brasington, M.S., J. Edward Spence, M.D., Laura S. Martin, M.D., Carol Clericuzio, M.D., Blake C. Ballif, Ph.D., Lisa G. Shaffer, Ph.D., and Evan E. Eichler, Ph.D.

NEJM 2012

- Penetrance of CNVs depends on the nature of the CNV
- I0% have additional CNV
- Reduced penetrant CNV give a phenotype in proportion to the size and number of additional CNVs
- Male genome is more susceptible to CNVs
- Analysis 2,312 / 32,587 sample set

Original Investigation

Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

Debra D'Angelo, MS; Sébastien Lebon, MD; Qixuan Chen, PhD; Sandra Martin-Brevet, MS; LeeAnne Green Snyder, PhD; Loyse Hippolyte, PhD; Ellen Hanson, PhD; Anne M. Maillard, PhD; W. Andrew Faucett, MS; Aurélien Macé, MS; Aurélie Pain, MS; Raphael Bernier, PhD; Samuel J. R. A. Chawner, MA; Albert David, MD; Joris Andrieux, MD, PhD; Elizabeth Aylward, MD; Genevieve Baujat, MD; Ines Caldeira, MD; Philippe Conus, MD; Carrina Ferrari, MS; Francesca Forzano, MD; Marion Gérard, MD; Robin P. Goin-Kochel, PhD; Ellen Grant, MD; Jill V. Hunter, MD; Bertrand Isidor, MD, PhD; Aurélia Jacquette, MD; Aia E. Jønch, MD; Boris Keren, MD; Didier Lacombe, MD; Cédric Le Caignec, MD, PhD; Christa Lese Martin, PhD; Katrin Männik, PhD; Andres Metspalu, PhD; Cyril Mignot, MD; Pratik Mukherjee, MD; Michael J. Owen, PhD; Marzia Passeggeri, MD; Caroline Rooryck-Thambo, MD; Jill A. Rosenfeld, PhD; Sarah J. Spence, MD, PhD; Kyle J. Steinman, MD; Jennifer Tjernagel, MS; Mieke Van Haelst, MD; Yiping Shen, PhD; Bogdan Draganski, MD; Elliott H. Sherr, MD, PhD; David H. Ledbetter, PhD; Mariane B. M. van den Bree, PhD; Jacques S. Beckmann, PhD; John E. Spiro, PhD; Alexandre Reymond, PhD; Sébastien Jacquemont, MD; Wendy K. Chung, MD, PhD; for the Cardiff University Experiences of Children With Copy Number Variants (ECHO) Study, the 16p11.2 European Consortium, and the Simons Variation in Individuals Project (VIP) Consortium

IMPORTANCE The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI).

OBJECTIVES To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD.

DESIGN, SETTING, AND PARTICIPANTS This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed ← Editorial page 7

+ Supplemental content at jamapsychiatry.com

RESULTS Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (\leq 40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies.

CONCLUSIONS AND RELEVANCE The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.

JAMA Psychiatry. 2016;73(1):20-30. doi:10.1001/jamapsychiatry.2015.2123 Published online December 2, 2015.

https://decipher.sanger.ac.uk

Search DECIPHER 🚱

Q

🜲 o Lucy Raymond -

Mapping the clinical genome

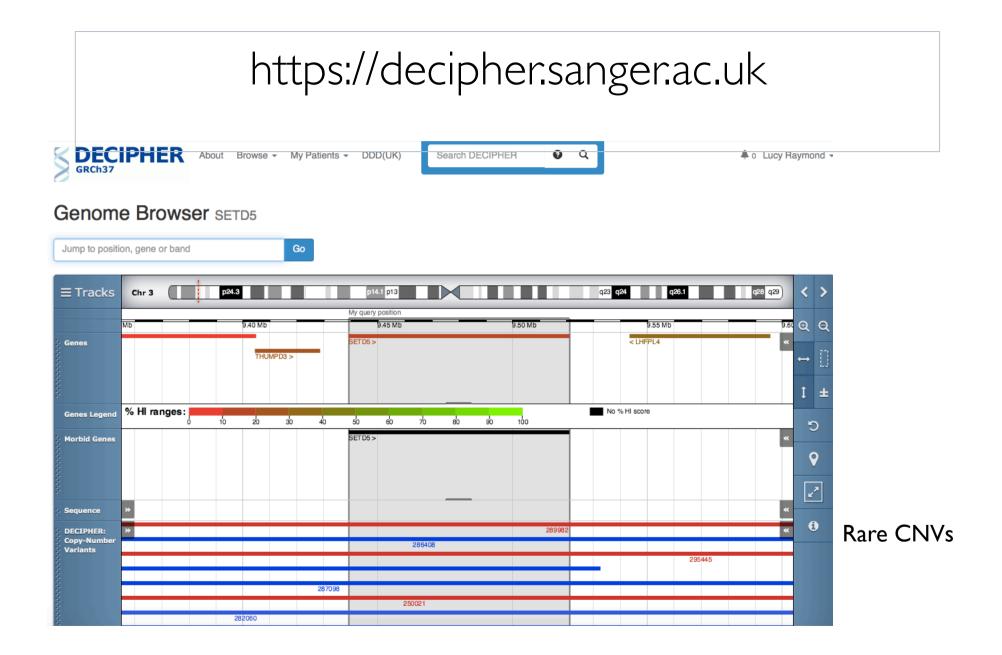
Explore DECIPHER

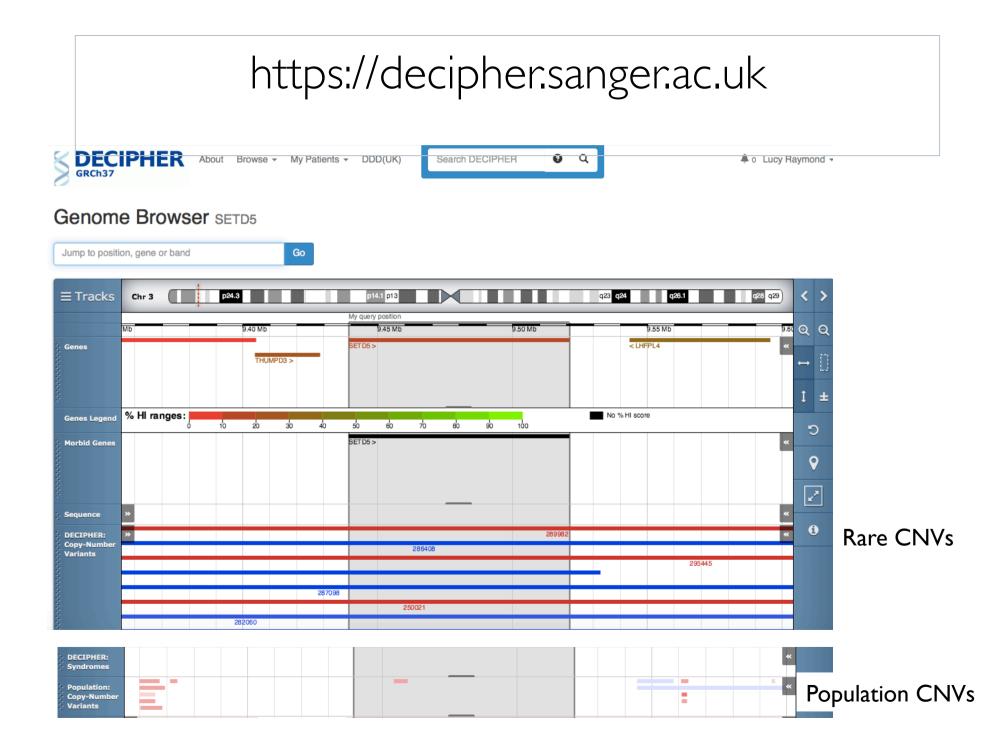
Discover • Connect • Collaborate

DECIPHER is used by the clinical community to share and compare phenotypic and genotypic data. The DECIPHER database contains data from 18932 patients who have given consent for broad data-sharing; DECIPHER also supports more limited sharing via consortia. Have a look at the numbers.

Anyone can browse publicly-available patient data on DECIPHER and request to be put in contact with the responsible clinician. Why? Because sharing benefits everyone.

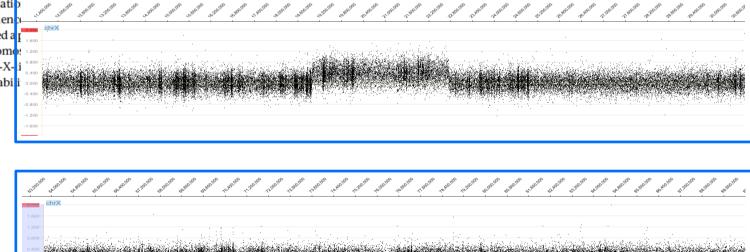

Welcome, Lucy Raymond


You're logged in and ready to go


You can use the links at the top of the page to navigate.

- · Wondering where to start? Read our user guides
- · Important documents, including consent forms, are available here
- More questions? Check the FAQ or contact us

Please note that Wednesdays between 09:00-11:00 UK local time is our designated "service at risk period" when routine work or upgrades may be performed.


Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability

Single gene/exon resolution

Annabel C. Whibley,¹ Vincent Plagnol,^{1,2} Patrick S. Tarpey,³ Fatima Abidi,⁴ Tod Fullston,^{5,6} Maja K. Choma,¹ Catherine A. Boucher,¹ Lorraine Shepherd,¹ Lionel Willatt,⁷ Georgina Parkin,⁷ Raffaella Smith,³ P. Andrew Futreal,³ Marie Shaw,⁸ Jackie Boyle,⁹ Andrea Licata,⁴ Cindy Skinner,⁴ Roger E. Stevenson,⁴ Gillian Turner,⁹ Michael Field,⁹ Anna Hackett,⁹ Charles E. Schwartz,⁴ Jozef Gecz,^{5,6,8} Michael R. Stratton,³ and F. Lucy Raymond^{1,*}

Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, *PTCHD1*, *WDR13*, *FAAH2*, and *GSPT2*, as

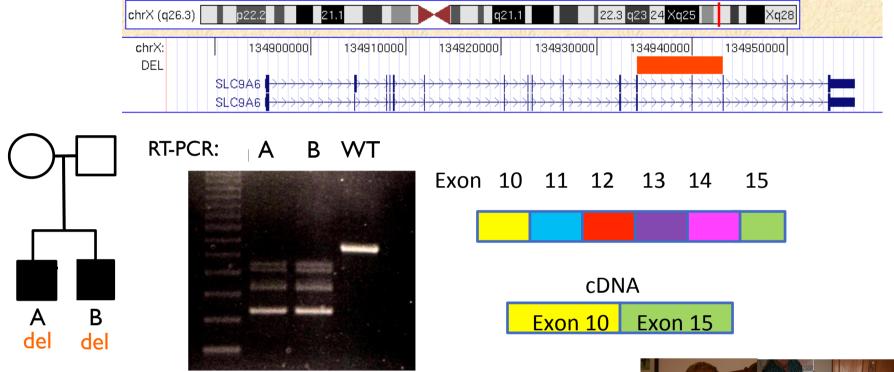
candidates for XLID causation apparent disease consequence mechanisms and indicated a printer investigations and X chromosy coding variants and non-X- i Genetics of Learning Disabi

Whibley et al Am J Hum Genetics (2010) 87:173-88

Copy number abnormalities on the X chromosome

Detection of Genomic Copy Number Changes in Patients With Idiopathic Mental Retardation by High-Resolution X-Array-CGH: Important Role for Increased Gene Dosage of XLMR Genes

Guy Froyen,^{1,2*} Hilde Van Esch,³ Marijke Bauters,^{1,2} Karen Hollanders,^{1,2} Suzanna G.M. Frints,⁴ Joris R. Vermeesch,³ Koen Devriendt,³ Jean-Pierre Fryns,³ and Peter Marynen^{1,2}


¹Human Genome Laboratory, Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ²Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium; ³Department of Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium; ⁴Department of Clinical Genetics, University Hospital, Maastricker The Mathematic

> Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual Disability

Annabel C. Whibley,¹ Vincent Plagnol,^{1,2} Patrick S. Tarpey,³ Fatima Abidi,⁴ Tod Fullston,^{5,6} Maja K. Choma,¹ Catherine A. Boucher,¹ Lorraine Shepherd,¹ Lionel Willatt,⁷ Georgina Parkin,⁷ Raffaella Smith,³ P. Andrew Futreal,³ Marie Shaw,⁸ Jackie Boyle,⁹ Andrea Licata,⁴ Cindy Skinner,⁴ Roger E. Stevenson,⁴ Gillian Turner,⁹ Michael Field,⁹ Anna Hackett,⁹ Charles E. Schwartz,⁴ Jozef Gecz,^{5,6,8} Michael R. Stratton,³ and F. Lucy Raymond^{1,*}

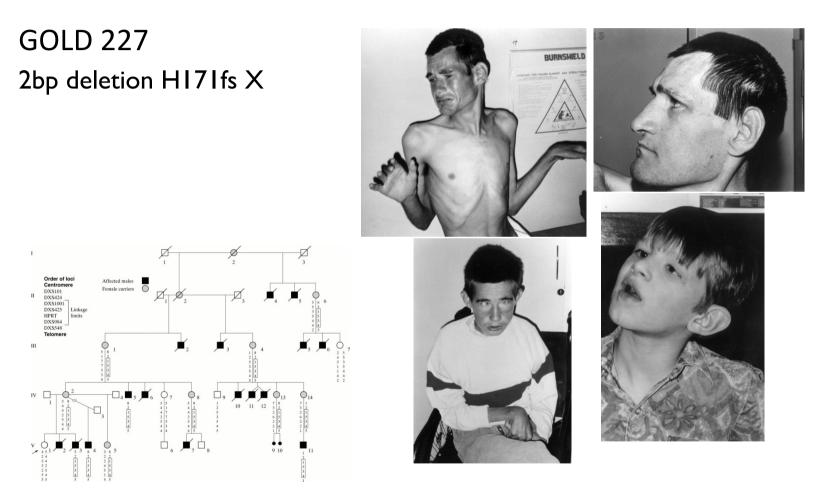
- 10-15% of cases have significant deletion or duplication
- MECP2 and HUWE1 regions are the commonest
- Find single exon deletions are detectable with high resolution array

SLC9A6 / NHE6

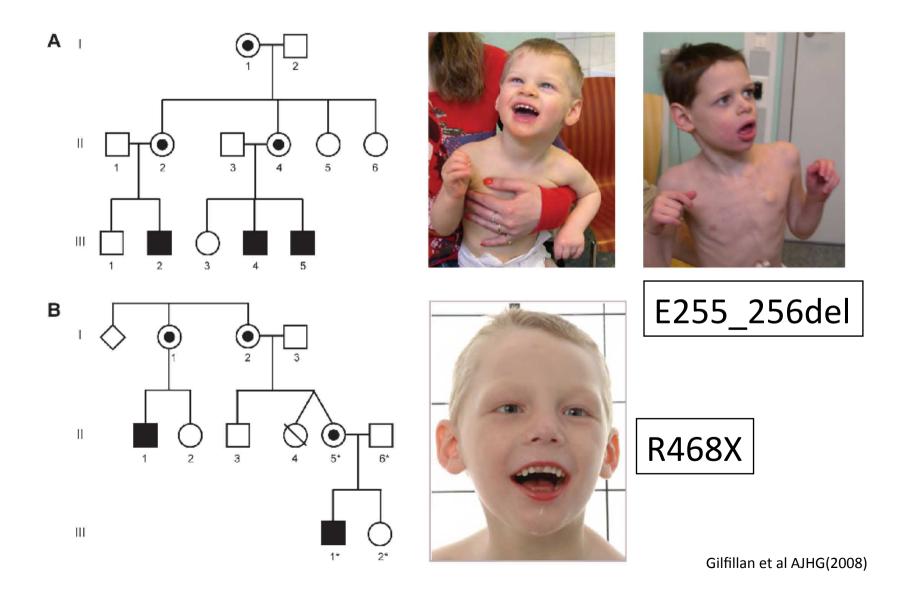
REPORT

SLC9A6 Mutations Cause X-Linked Mental Retardation, Microcephaly, Epilepsy, and Ataxia, a Phenotype Mimicking Angelman Syndrome

Gregor D. Gilfillan,^{1,2,15} Kaja K. Selmer,^{1,2,15} Ingrid Roxrud,³ Raffaella Smith,⁴ Mårten Kyllerman,⁵ Kristin Eiklid,¹ Mette Kroken,¹ Morten Mattingsdal,¹ Thore Egeland,¹ Harald Stenmark,³ Hans Sjøholm,⁶ Andres Server,⁷ Lena Samuelsson,⁸ Arnold Christianson,⁹ Patrick Tarpey,⁴ Annabel Whibley,¹⁰ Michael R. Stratton,⁴ P. Andrew Futreal,⁴ Jon Teague,⁴ Sarah Edkins,⁴ Jozef Gecz,¹¹ Gillian Turner,¹² F. Lucy Raymond,¹⁰ Charles Schwartz,¹³ Roger E. Stevenson,¹³ Dag E. Undlien,^{1,2} and Petter Strømme^{2,14,*} A|HG (2008) 82:1003-1010

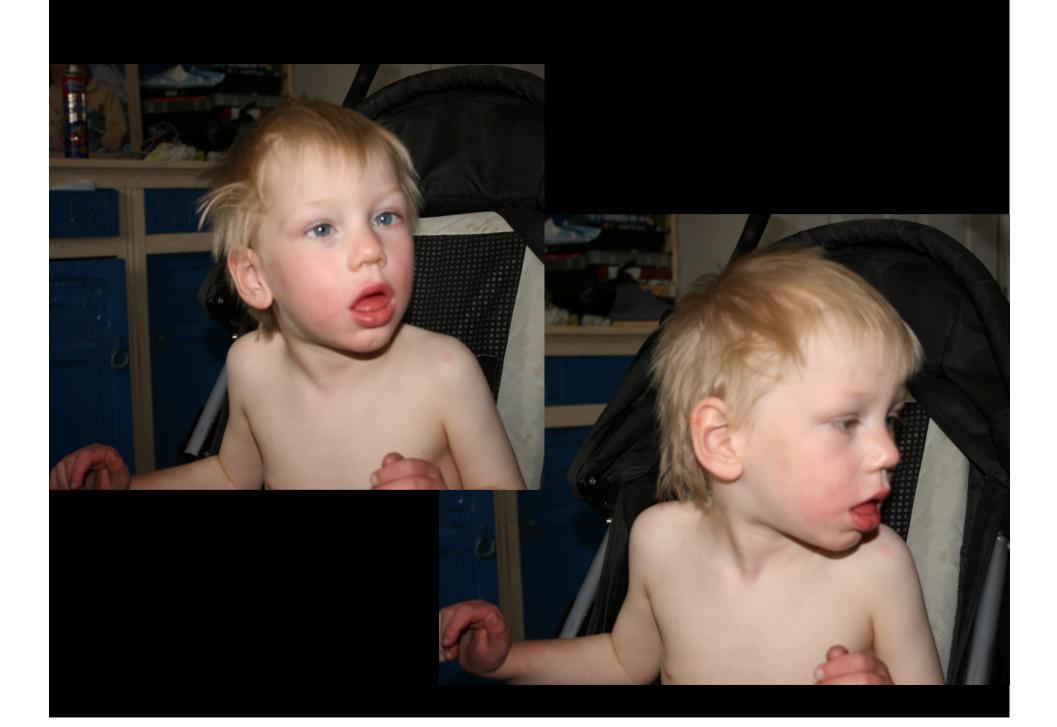


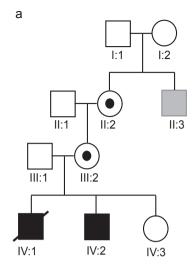
Family 115 Always moving ataxic Shy No speech Toileted Microcephaly


Family 115 Microcephaly No speech Wheelchair from aged 15 Previously very mobile Incontinent Kyphoscoliosis Flexed hand postures Moving hands

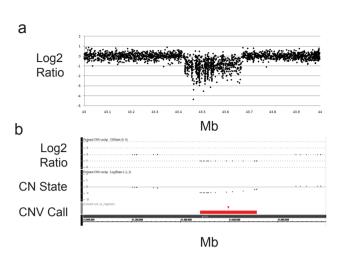
Christianson syndrome

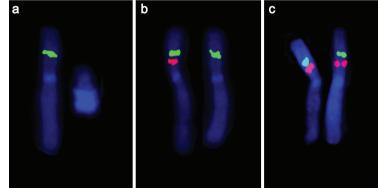
Christianson et al (1999) JMG 36 759-766

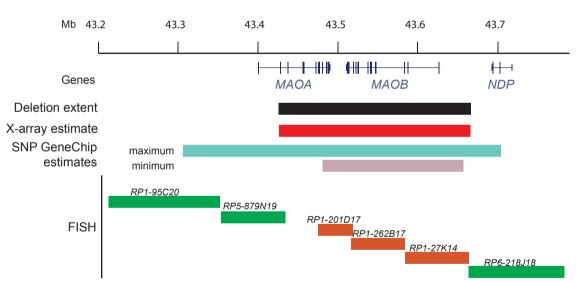

Swedish and Norwegian families



Aged 21 Severe scoliosis Double incontinence


1


Gilfillan et al AJHG(2008)



MAOA and MAOB deletion Whibley et al Eur J Hum Genet. 18:1095-9 (2010).

Mutational mechanisms for monogenic diseases

HGMD 2010 102,433 entries

57,570 missense/nonsense mutations

- 9,791 splicing
- 8,135 small insertions or indels
- 74% of all entries detectable by sequencing strategy
- 16,080 small deletions
- 6,403 large deletions
- 1,338 large insertions or duplications
- 22% of all entries detectable by array CGH strategy

A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

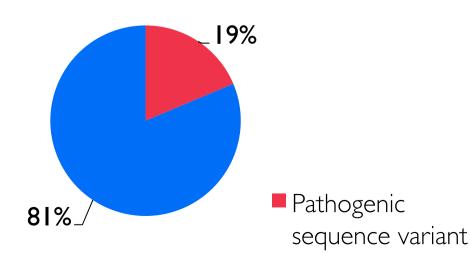
Patrick S Tarpey¹, Raffaella Smith¹, Erin Pleasance¹, Annabel Whibley², Sarah Edkins¹, Claire Hardy¹, Sarah O'Meara¹, Calli Latimer¹, Ed Dicks¹, Andrew Menzies¹, Phil Stephens¹, Matt Blow¹, Chris Greenman¹, Yali Xue¹, Chris Tyler-Smith¹, Deborah Thompson³, Kristian Gray¹, Jenny Andrews¹, Syd Barthorpe¹, Gemma Buck¹, Jennifer Cole¹, Rebecca Dunmore¹, David Jones¹, Mark Maddison¹, Tatiana Mironenko¹, Rachel Turner¹, Kelly Turrell¹, Jennifer Varian¹, Sofie West¹, Sara Widaa¹, Paul Wray¹, Jon Teague¹, Adam Butler¹, Andrew Jenkinson¹, Mingming Jia¹, David Richardson¹, Rebecca Shepherd¹, Richard Wooster¹, M Isabel Tejada⁴, Francisco Martinez⁵, Gemma Carvill⁶, Rene Goliath⁶, Arjan P M de Brouwer⁷, Hans van Bokhoven⁷, Hilde Van Esch⁸, Jamel Chelly⁹, Martine Raynaud¹⁰, Hans-Hilger Ropers¹¹, Fatima E Abidi¹², Anand K Srivastava¹², James Cox², Ying Luo², Uma Mallya², Jenny Moon², Josef Parnau², Shehla Mohammed¹³, John L Tolmie¹⁴, Cheryl Shoubridge¹⁵, Mark Corbett¹⁵, Alison Gardner¹⁵, Eric Haan¹⁵, Sinithhorn Rujirabanjerd¹⁵, Marie Shaw¹⁵, Lucianne Vandeleur¹⁵, Tod Fullston¹⁵, Douglas F Easton³, Jackie Boyle¹⁶, Michael Partington¹⁶, Anna Hackett¹⁶, Michael Field¹⁶, Cindy Skinner¹², Roger E Stevenson¹², Martin Bobrow², Gillian Turner¹⁶, Charles E Schwartz¹², Jozef Gecz^{15,17}, F Lucy Raymond², P Andrew Futreal¹ & Michael R Stratton^{1,18}

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including *SYP*, *ZNF711* and *CASK* reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.

Tarpey et al Nature Genetics (2009) 41:536-543

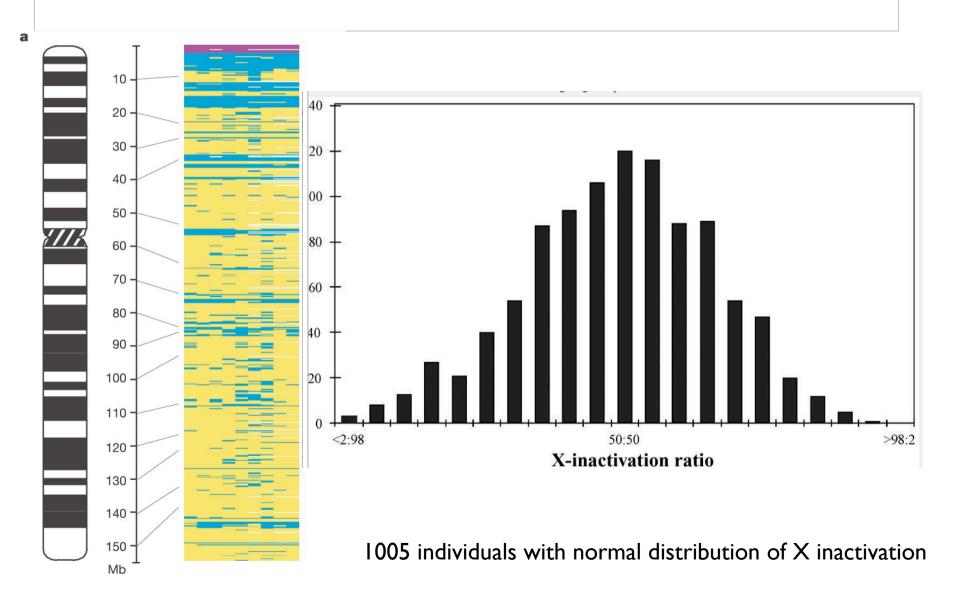
rights ı

∃


ы Ц

Nature

2009


Ø

d

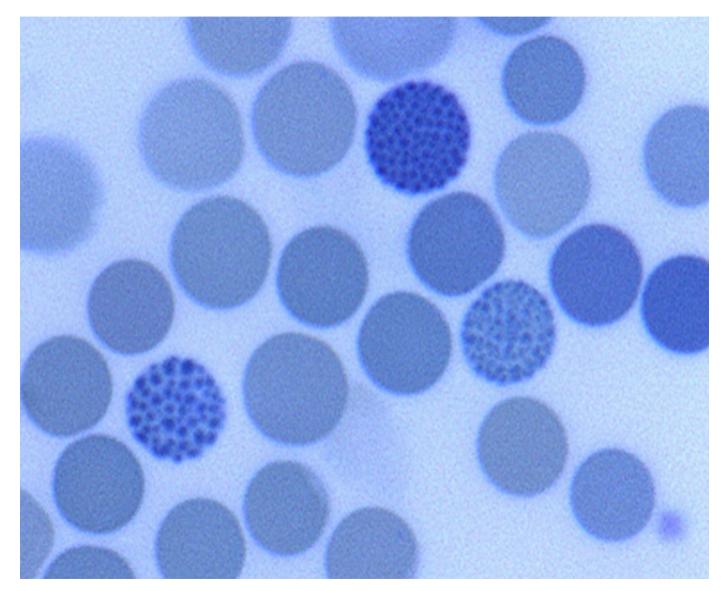
DLG3 APIS2 CUL4B ZDHHC9 BRWD3 UPF3B SLC9A6 MED12 IQSEC CASK SYP ZNF711

X inactivation in mothers

X linked genes associated with skewed X inactivation

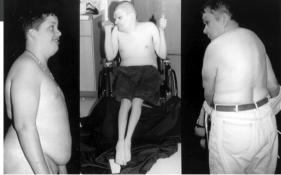
- MECP2
- HUWEI
- UPF3B
- CUL4B
- ATRX
- Others more variable
- Skewed = >95% one allele
- Largely depends on whether the gene of interest is expressed in lymphocytes to any extent
- If skewed then X linked disease likely. If not skewed then risk of X linked disease is not significantly reduced except for a few genes

ATRX (X-linked alpha thalassaemia)



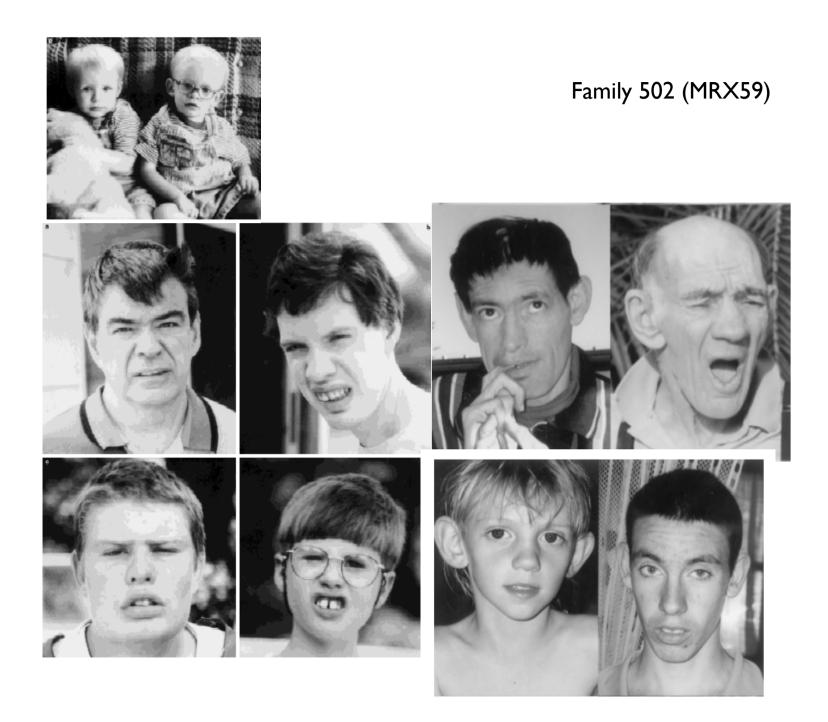
'Milder ATRX phenotype'

Guerrini et al. 2000 Ann Neurol 47:117-121


HbH inclusions

CUL4B syndrome

Mutations in CUL4B, Which Encodes a Ubiquitin E3 Ligase Subunit, Cause an X-linked Mental Retardation Syndrome Associated with Aggressive Outbursts, Seizures, Relative Macrocephaly, Central Obesity, Hypogonadism, Pes Cavus, and Tremor



Tarpey et al AJHG 80 345-352 (2007)

Badura-Stronka et al Clinical Genetics 2009

Severe intellectual disability Speech impairment Hyperactivity Seizures Intention tremor Inguinal hernia Small feet Pes cavus

CLINICAL REPORT

Deletion of the *CUL4B* Gene in a Boy With Mental Retardation, Minor Facial Anomalies, Short Stature, Hypogonadism, and Ataxia

Bertrand Isidor,¹* Olivier Pichon,¹ Sabine Baron,² Albert David,¹ and Cédric Le Caignec^{1,3,4,5}

¹Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes 7, Nantes, France

²Service d'Endocrinologie Pédiatrique, Centre Hospitalier Universitaire de Nantes 7, Nantes, France

³INSERM, UMR915, l'institut du Thorax, Nantes, France

⁴CNRS, ERL3147, Nantes, France ⁵Université de Nantes, Nantes, France

Received 7 August 2009; Accepted 12 September 2009

Small palpebral fissures Ptosis Telecanthus Small nose Narrow nostrils Prominent lower lip Hypotonic breathing

CUL4B, MCTSI, and LAMP2 deleted

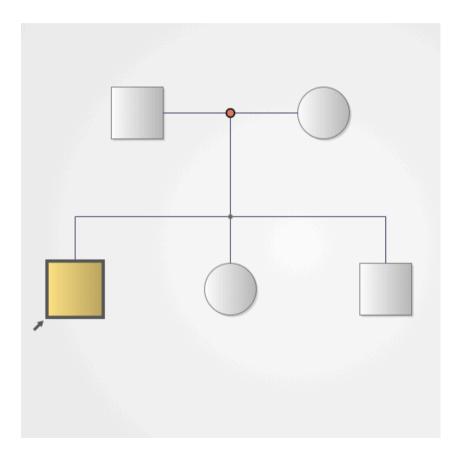

Summary of main features

TABLE I. Summary of the Findings in Patients With CUL4B Mutations

	Tarpey et al. [2007]	Zou et al. [2007]	Our patient	Total
Motor delay	5/5	6/6	+	12/12
Speech delay	18/18	6/6	+	25/25
Short stature	7/11	6/6	+	14/18
Macrocephaly	8/11	0/6	-	8/18
Mental retardation	22/22	6/6	+	29/29
Aggressive outbursts	12/15	0/6	+	13/22
Tremors	11/13	1/5	+	13/19
Seizures	8/11	4/5	-	12/17
Obesity	15/19	0/5	_	15/25
Pes cavus	7/8	0/5	+	8/14
Small testes	10/15	1/5	+	12/20
Prominent lower lip	6/17	5/5	+	12/23
Gait ataxia	6/12	6/6	+	13/19
Kyphosis	3/18	NR	+	4/19
Abnormal toes, with wide 1–2 gap	11/13	NR	+	11/14

Additional features emerging: Facial grimace Prominent front teeth Structural brain abnormalities including abnormal ventricles, corpus callosum, PVL, hydrocephalus, porencephalic cysts

Mechanism of Disease

- Environmental
- Genomics CNV abnormality
- X linked recessive
- Autosomal recessive
- De novo autosomal dominant

NATURE GENETICS | LETTER

A *de novo* paradigm for mental retardation

Lisenka E L M Vissers, Joep de Ligt, Christian Gilissen, Irene Janssen, Marloes S Petra de Vries, Bart van Lier, Peer Arts, Nienke Wieskamp, Marisol del Rosario, B van Bon, Alexander Hoischen, Bert B A de Vries, Han G Brunner & Joris A Veltm

Affiliations | Contributions | Corresponding authors

Nature Genetics 42, 1109–1112 (2010) | doi:10.1038/ng.712 Received 11 August 2010 | Accepted 18 October 2010 | Published online 14 Novem LETTER

doi:10.1038/nature14135

Large-scale discovery of novel genetic causes of developmental disorders

The Deciphering Developmental Disorders Study*

of children with severe developmental disorders of probable genetic ing the same gene.

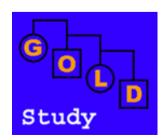
Despite three decades of successful, predominantly phenotype-driven were analysed jointly in the following analyses, allowing, for example, discovery of the genetic causes of monogenic disorders¹, up to half the identification of compound heterozygous CNVs and SNVs affect-

>1000 trios with intellectual disability

Patterns and rates of exonic de novo mutations in autism spectrum disorders

Benjamin M. Neale^{1,2}, Yan Kou^{3,4}, Li Liu⁵, Avi Ma'ayan³, Kaitlin E. Samocha^{1,2}, Aniko Sabo⁶, Chiao-Feng Lin⁷, Christine Stevens², Li-San Wang⁷, Vladimir Makarov^{4,8}, Paz Polak^{2,9}, Seungtai Yoon^{4,8}, Jared Maguire², Emily L. Crawford¹⁰, Nicholas G. Campbell¹⁰, Evan T. Geller⁷, Otto Valladares⁷, Chad Schafer⁵, Han Liu¹¹, Tuo Zhao¹¹, Guiqing Cai^{4,8}, Jayon Lihm^{4,8}, Ruth Dannenfelser³, Omar Jabado¹², Zuleyma Peralta¹², Uma Nagaswamy⁶, Donna Muzny⁶, Jeffrey G. Reid⁶, Irene Newsham⁶, Yuanqing Wu⁶, Lora Lewis⁶, Yi Han⁶, Benjamin F. Voight^{2,13}, Elaine Lim^{1,2}, Elizabeth Rossin^{1,2}, Andrew Kirby^{1,2}, Jason Flannick², Menachem Fromer^{1,2}, Khalid Shakir², Tim Fennell², Kiran Garimella², Eric Banks², Ryan Poplin², Stacey Gabriel², Mark DePristo², Jack R. Wimbish¹⁴, Braden E. Boone¹⁴, Shawn E. Levy¹⁴, Catalina Betancur¹⁵, Shamil Sunyaev^{2,9}, Eric Boerwinkle^{6,16}, Joseph D. Buxbaum^{4,8,12,17}, Edwin H. Cook Jr¹⁸, Bernie Devlin¹⁹, Richard A. Gibbs⁶, Kathryn Roeder⁵, Gerard D. Schellenberg⁷ James S. Sutcliffe¹⁰ & Mark J. Daly^{1,2}

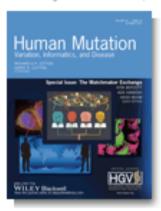
De novo mutations revealed by whole-exome sequencing are strongly associated with autism


Stephan J. Sanders¹, Michael T. Murtha¹, Abha R. Gupta^{2*}, John D. Murdoch^{1*}, Melanie J. Raubeson^{1*}, A. Jeremy Willsev^{1*}, A. Gulhan Ercan-Sencicek^{1*}, Nicholas M. DiLullo^{1*}, Neelroop N. Parikshak³, Jason L. Stein³, Michael F. Walker¹, Gordon T. Ober¹, Nicole A. Teran¹, Youeun Song¹, Paul El-Fishawy¹, Ryan C. Murtha¹, Murim Choi⁴, John D. Overton⁴, Robert D. Bjornson⁵, Nicholas J. Carriero⁵, Kyle A. Meyer⁶, Kaya Bilguvar⁷, Shrikant M. Mane⁸, Nenad Šestan⁶, Richard P. Lifton⁴, Murat Günel⁷, Kathrvn Roeder⁹, Daniel H. Geschwind³, Bernie Devlin¹⁰ & Matthew W. State¹

1549 variants that are de novo in autism

Targeted Exome Sequence Analysis of 1000 individuals with Intellectual Disability

- 1,000 families where a single sample was available from the proband with ID
- 2,812 sample with CHD and or other rare diseases not associated with ID
- 996 ID samples pass QC of DNA went for sequencing
- 986 QC variant calling (10 cases had >30 variants)
- 565 genes
 - 253 known genes
 - (UK10K, Gilissen and DDD)
 - 312 candidate genes
 - (UKI0K, Rauch, de Ligt)



Results

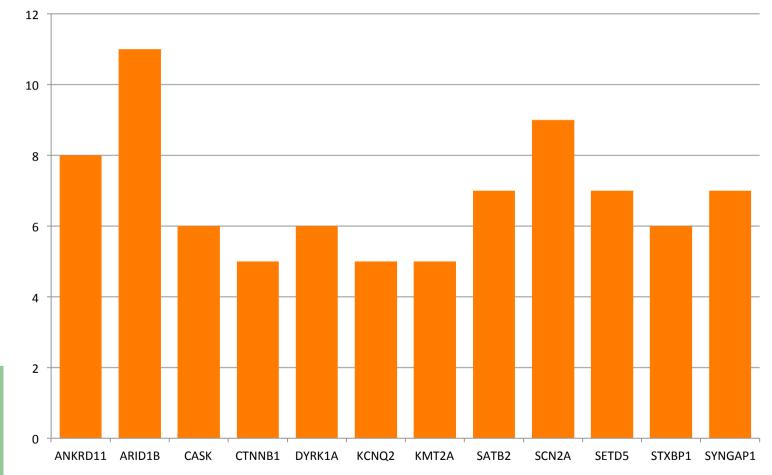
8466 variants in 986 individuals 8011 missense and 455 LOF 8 rare variants in 253 known genes per patient

All these variants are in Grozeva et al Hum Mutation (2015) PMID: 2635C open access

➢ Likely pathogenic LOF and missense variants- DECIPHER

Table of 77 LoF variants in 44 known genes

Autosomal Dominant Inheritance		X-linked Inheritance		Recessive Inheritance		
Gene	N cases		Gene	N cases	Gene	N cases
SETD5	7		ATRX	6	HEXA	l (comp. het.)
ARID I B	4		CUL4B	5	AGA	l (homoz.)
TCF4	2		ILIRAPLI	3	HGSNAT	I (homoz.+missense)
KANKI	2		BRWD3	2	PAH	l (homoz.)
GRIN2B	2		NLGN4X	I		
SCN2A	2	2		2		
SHANK2	2	2		2		
CHD7	2	SETD5, ARID1B, ATRX and CUL4B commonest genes				
CTNNBI	2					
KAT6B	2					
SETBPI	l		ACSL4	I		
UBE3A	I		AFF2	I		
ASXLI	I		GPC3	I		
MLL2	I		KDM5C	I		
CREBBP	l		MAOA	I		
SCN8A	l		OFD I	I		
EHMTI	l		PTCHDI	I		
FOXPI			SMCIA			
KANSLI			SMS	I		
MEF2C			TSPAN7			
NSD I			USP9X	I		
PAX6						
PTEN						
RAFI						


Table of 77 LoF variants in 44 known genes

Autosomal Dominant Inheritance		X-linked Inheritance		Recessive Inheritance		
Gene	N cases		Gene	N cases	Gene	N cases
SETD5	7		ATRX	6	HEXA	l (comp. het.)
ARID I B	4	4		5	AGA	l (homoz.)
TCF4	2		ILIRAPLI	3	HGSNAT	I (homoz.+missense)
KANKI	2		BRWD3	2	PAH	l (homoz.)
GRIN2B	2		NLGN4X	I		
SCN2A	2	2		2		
SHANK2	2		PORPI	2		
CHD7	2	Syndromic genes with non-syndromic phenotype				
CTNNBI	2					
KAT6B	2	phe				
SETBPI			ACSL4	I		
UBE3A		I		I		
ASXLI	I	I		I		
MLL2			KDM5C	I		
CREBBP	I		MAOA	I		
SCN8A	I		OFD I	I		
EHMTI			PTCHDI	I		
FOXPI	I		SMCIA	I		
KANSLI			SMS			
MEF2C	I		TSPAN7			
NSD I			USP9X			
PAX6						
PTEN	I					
RAFI						

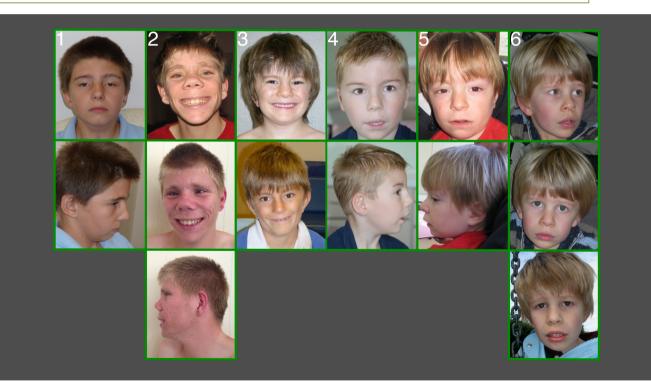
Table of 77 LoF variants in 44 known genes

Autosomal Dominant Inheritance		X-linked Inheritance		Recessive Inheritance			
Gene	N cases	Gene	N cases	Gene	N cases		
SETD5	7	ATRX	6	HEXA	l (comp. het.)		
ARID I B	4	CUL4B	5	AGA	l (homoz.)		
TCF4	2	IL I RAPL I	3	HGSNAT	I (homoz.+missense)		
KANKI	2	BRWD3	2	PAH	l (homoz.)		
GRIN2B	2	NLGN4X					
SCN2A	2	OPHN I	2				
SHANK2	2	PORPI	2				
CHD7	2 60/7	60/77 78% of variants not present on HGMD					
CTNNBI	2						
KAT6B	2						
SETBPI	l	DIAGNOSTIC RATE 8%					
UBE3A		AFF2					
ASXLI		GPC3	I				
MLL2		KDM5C	I				
CREBBP		MAOA					
SCN8A		OFD I	I				
EHMTI		PTCHDI	I				
FOXPI		SMCIA					
KANSLI		SMS					
MEF2C		TSPAN7					
NSD I		USP9X					
PAX6							
PTEN							
RAFI							

Diagnostic yield of >25% if trio analysis to identify rare de novo events

REPORT

De Novo Loss-of-Function Mutations in *SETD5*, Encoding a Methyltransferase in a 3p25 Microdeletion Syndrome Critical Region, Cause Intellectual Disability


Detelina Grozeva,¹ Keren Carss,² Olivera Spasic-Boskovic,¹ Michael J. Parker,³ Hayley Archer,⁴ Helen V. Firth,⁵ Soo-Mi Park,⁵ Natalie Canham,⁶ Susan E. Holder,⁶ Meredith Wilson,⁷ Anna Hackett,⁸ Michael Field,⁹ James A.B. Floyd,^{2,10} UK10K Consortium,² Matthew Hurles,² and F. Lucy Raymond^{1,*}

AJHG 2014

Loss of function of SETD5 is a relatively frequent cause of ID (0.7% in our ID sample)

Occurs as a rare de novo mutational event

LoF mutations within SETD5 is sufficient to cause many of the features of 3p25 microdeletion syndrome

ARIDIB Coffin-Siris or severe ID

Mutations in SWI/SNF chromatin remodeling complex gene *ARID1B* cause Coffin-Siris syndrome

Gijs W E Santen, Emmelien Aten, Yu Sun, Rowida Almomani, Christian Gilissen, Maartje Nielsen, Sarina G Kant, Irina N Snoeck, Els A J Peeters, Yvonne Hilhorst-Hofstee, Marja W Wessels, Nicolette S den Hollander, Claudia A L Ruivenkamp, Gert-Jan B van Ommen, Martijn H Breuning, Johan T den Dunnen, Arie van Haeringen & Marjolein Kriek

< Previous Article

Volume 90, Issue 3, p565-572, 9 March 2012

Haploinsufficiency of *ARID1B*, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability

Juliane Hoyer⁸, Arif B. Ekici⁸, Sabine Endele⁸, Bernt Popp, Christiane Zweier, Antje Wiesener, Eva Wohlleber, Andreas Dufke , Eva Rossier, Corinna Petsch, Markus Zweier, Ina Göhring, Alexander M. Zink, Gudrun Rappold, Evelin Schröck, Dagmar Wieczorek , Olaf Riess, Hartmut Engels, Anita Rauch, André Reis 🖅 🔄

Switch to Standard View

European Journal of Human Genetics (2015) 23, 1176-1185 © 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/eihg

ARTICLE

Further delineation of the KBG syndrome phenotype caused by *ANKRD11* aberrations

This paper has been corrected since online publication and a corrigendum also appears in this issue

Charlotte W Ockeloen^{*,1}, Marjolein H Willemsen^{*,1}, Sonja de Munnik¹, Bregje WM van Bon^{1,2}, Nicole de Leeuw¹, Aad Verrips³, Sarina G Kant⁴, Elizabeth A Jones^{5,6}, Han G Brunner¹, Rosa LE van Loon⁷, Eric EJ Smeets⁸, Mieke M van Haelst⁹, Gijs van Haaften⁹, Ann Nordgren^{10,11}, Helena Malmgren^{10,11}, *Correspi 2*, *Data Sectory*, Reprod.², Barbon J. Sterner, J. Margare, M. Sterner, J. Margare, M. Sterner, J. Margare, M. Sterner, J. Margare, M. Sterner, S. St

/remeer¹², Pedro Louro¹³, Lina Ramos¹³, Thomas JJ Maal¹⁴, G Yntema¹, Carine EL Carels^{16,17} and Tjitske Kleefstra^{1,17}

ANKRDII

)XZX

Individual 1

Individual 3

¹ Individual 8 Individual 9

Individual 10

Individual 4 Individual 5

Individual 13

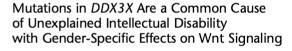
Individual 11

Individual 12

Individual 20

Individual 23

Individual 24



REPORT 5

Individual 37

AJHG

Lot Snijders Blok,^{1,48} Erik Madsen,^{2,48} Jane Juusola,^{3,48} Christian Gilissen,¹ Diana Baralle,⁴ Margot R.F. Reijnders,¹ Hanka Venselaar,⁵ Céline Helsmoortel,⁶ Megan T. Cho,³ Alexander Hoischen,¹ Lisenka E.L.M. Vissers,¹ Tom S. Koemans,¹ Willemijn Wissink-Lindhout,¹ Evan E. Eichler,^{7,8} Corrado Romano,⁹ Hilde Van Esch,¹⁰ Connie Stumpel,¹¹ Maaike Vreebu¹,¹¹ Eric Smeets,¹¹ Karin Oberndorff,¹² Bregje W.M. van Bon,^{1,13} Marie Shaw,¹³ Jozef Gecz,¹³ Eric Haan,^{13,14} Melanie Bienek,¹⁵ Corinna Jensen,¹⁵ Bart L. Loeys,⁶ Anke Van Dijck,⁶ A. Micheil Innes,¹⁶ Hilary Racher,¹⁶ Sascha Vermeer,¹⁷ Nataliya Di Donato,¹⁸ Andreas Rump,¹⁸ Katrina Tatton-Brown,¹⁹ Michael J. Parker, 20 Alex Henderson, 21 Sally A. Lynch, 22 Alan Fryer, 23 Alison Ross, 24 Pradeep Vasudevan,²⁵ Usha Kini,²⁶ Ruth Newbury-Ecob,²⁷ Kate Chandler,²⁸ Alison Male,²⁹ the DDD Study, Sybe Dijkstra,30

Volume 97, Issue 2, 6 August 2015, Pages 343–352

Individual 26

How to assess a variant is pathogenic

• Rare

- Segregates
- Present in diagnostic databases
 HGMD and ClinVar but presence is not proof
- Clinically fits
- Still no automated variant analysis can get there
 Multidisciplinary approach

Variant assessment in >120,000 alleles

ExAC Browser (Beta) | Exome Aggregation Consortium

SETD5

Examples - Gene: PCSK9, Transcript: ENST00000407236, Variant: 22-46615880-T-C, Multi-allelic variant: rs1800234, Region: 22:46615715-46615880

About ExAC

The Exome Aggregation Consortium (ExAC) is a coalition of investigators seeking to aggregate and harmonize exome sequencing data from a wide variety of large-scale sequencing projects, and to make summary data available for the wider scientific community.

The data set provided on this website spans 60,706 unrelated individuals sequenced as part of various disease-specific and population genetic studies. The ExAC Principal Investigators and groups that have contributed data to the current release are listed here.

All data here are released under a Fort Lauderdale Agreement for the benefit of the wider biomedical community - see the terms of use here.

Sign up for our mailing list for future release announcements here.

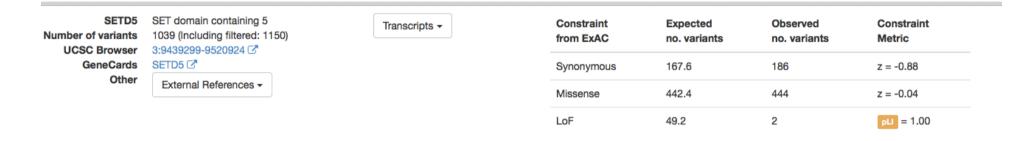
Recent News

January 13, 2015

- Version 0.3 ExAC data and browser (beta) is released! (Release notes)

October 29, 2014

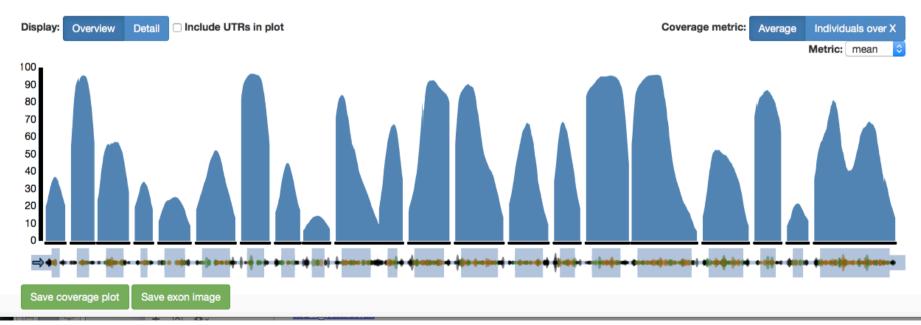
- Version 0.2 ExAC data and browser (beta) is released! Sign up for our mailing list for future release announcements here.


October 20, 2014

- Public release of ExAC Browser (beta) at ASHG!

October 15, 2014

- Internal release to consortium now available!


Coverage, constraint score and individual variants

Gene summary

(Coverage shown for canonical transcript: ENST00000402198)

Mean coverage 51.90

Coverage, constraint score and individual variants

3:	:9470608 G / T	3	9470608		PASS	5' UTR	4	101102	0	0.00003956	
3:	:9470609 C / G	3	9470609		PASS	5' UTR	4	101664	0	0.00003935	t
3:	:9470613 G / A	3	9470613		PASS	5' UTR	9	103950	0	0.00008658	
	:9470615 T / C rs182194074)	3	9470615		PASS	5' UTR	2	104876	0	0.00001907	
3:	:9470635 A / G	3	9470635	p.lle5Val	PASS	missense	3	111810	0	0.00002683	
3:	:9470636 T / A	3	9470636	p.lle5Asn	PASS	missense	1	111934	0	0.000008934	D
3:	:9470639 C / G	3	9470639	p.Pro6Arg	PASS	missense	1	112390	0	0.000008898	
3:	:9470655 A / G	3	9470655	p.Thr11Thr	PASS	synonymous	8	113032	0	0.00007078	
3:	:9470657 C / T	3	9470657	p.Ser12Leu	PASS	missense	10	112962	0	0.00008853	
3:	:9470703 A / G	3	9470703		PASS	non coding transcript exon	1	102598	0	0.000009747	
3:	:9470710 A / G	3	9470710		PASS	non coding transcript exon	1	100556	0	0.000009945	als over X
3:	:9470717 A / T	3	9470717		PASS	non coding transcript exon	1	99468	0	0.00001005	mean
3:	:9470723 A / G	3	9470723		PASS	non coding transcript exon	2	98014	0	0.00002041	
3:	:9470724 T / C	3	9470724		PASS	non coding transcript exon	11	97712	0	0.0001126	
3:	:9470726 A / G	3	9470726		PASS	non coding transcript exon	1	97132	0	0.00001030	
3:	:9470742 A / G	3	9470742		PASS	non coding transcript exon	1	90642	0	0.00001103	
3:	:9471465 C / T	3	9471465		PASS	intron	1	12638	0	0.00007913	
3:	:9471492 C / G	3	9471492		PASS	intron	12	13602	0	0.0008822	
3:	:9471588 A / C	3	9471588	p.Gin50Pro†	PASS	missense	1	14552	0	0.00006872	
3:	:9471635 G / A	3	9471635		PASS	5' UTR	1	14488	0	0.00006902	

Save coverage plot

Save exon image

Coverage, constraint score and individual variants

3:9470608 G / T	3	9470608		PASS	5' UTR	4	101102	0	0.00003956	
3:9470609 C / G	3	9470609		PASS	5' UTR	4	101664	0	0.00003935	
3:9470613 G / A	3	9470613		PASS	5' UTR	9	103950	0	0.00008658	
3:9470615 T / C (rs182194074)	3	9470615		PASS	5' UTR	2	104876	0	0.00001907	
3:9470635 A / G	3	9470635	p.lle5Val	PASS	missense	3	111810	0	0.00002683	
3:9470636 T / A	3	9470636	p.lle5Asn	PASS	missense	1	111934	0	0.000008934	
3:9470639 C / G	3	9470639	p.Pro6Arg	PASS	missense	1	112390	0	0.000008898	
3:9470655 A / G	3	9470655	p.Thr11Thr	PASS	synonymous	8	113032	0	0.00007078	
3:9470657 C / T	3	9470657	p.Ser12Leu	PASS	missense	10	112962	0	0.00008853	
3:9470703 A / G	3	9470703		PASS	non coding transcript exon	1	102598	0	0.000009747	
3:9470710 A / G	3	9470710		PASS	non coding transcript exon	1	100556	0	0.000009945	
3:9470717 A / T	3	9470717		PASS	non coding transcript exon	1	99468	0	0.00001005	
3:9470723 A / G	3	9470723		PASS	non coding transcript exon	2	98014	0	0.00002041	
3:9470724 T / C	3	9470724		PASS	non coding transcript exon	11	97712	0	0.0001126	
3:9470726 A / G	3	9470726		PASS	non coding transcript exon	1	97132	0	0.00001030	
3:9470742 A / G	3	9470742		PASS	non coding transcript exon	1	90642	0	0.00001103	
3:9471465 C / T	3	9471465		PASS	intron	1	12638	0	0.00007913	
3:9471492 C / G	3	9471492		PASS	intron	12	13602	0	0.0008822	
3:9471588 A / C	3	9471588	p.Gln50Pro†	PASS	missense	1	14552	0	0.00006872	
3:9471635 G / A	3	9471635		PASS	5' UTR	1	14488	0	0.00006902	

Additional source of knowledge

- Parents
- Parents
- Parents
 - Support groups
 - Parental observations
 - Parental research
 - Internet groups

UNIQUE Rare chromosome support charity http://www.rarechromo.org

UNIQUE http://www.rarechromo.org

#mylittlepwsdiva

@GeneticDisUK

24 February 2016

We are thrilled to have won the

Eurordis Patient Organisation Award

2016. This prestigious award

recognises the service we provide to

all those affected by rare chromosome

disorders, their families and the

doctors & other medical professionals

We are recruiting a Part-time

Fundraising Officer (fixed-term, maternity cover) to work at our office base in Oxted, Surrey. Great opportunity to develop your fundraising skills and help Unique's continued development. For more information and to apply, please click here,

for Unique 01 February 2016

We've been looking back over another very busy and very positive year for Unique. As ever, we are touched by the numbers of people getting out there to fundraise for us and raise awareness of rare chromosome disorders. Please click here to watch

UNIQUE http://www.rarechromo.org

Understanding chromosome disorders			ONATE NOW				
	Home About Us	n lafamatian Quantit		Mah Marajan	Print Version	Quick Read	
Unique		Information Support U		Web Version		QUICK Read	
		Chromosomes and Disorders	2q37 deletions in adults and adolescents	Web Version	Print Version		
Families		Why we need your information	Ring 2	Web Version	Print Version	Quick Read	
Professional Contractor		Disorder Guides - English	SATB2 syndrome			Quick Read	
Professionals		Disorder Guides - Translations	Chromosome 3				
Fundraising	Welcome	Registered Disorders	3p25 deletions	Web Version	Print Version	Quick Read	
		Request a Phenotype	3p26 deletions	Web Version	Print Version		
Sign up for our News Alerts	to Unique	Practical Guides for Families	3q duplications	Web Version	Print Version		
Enter your email address	to Unique		3q13 deletions and microdeletions	Web Version	Print Version		
GO		New Members Pack	3q29 deletions and microdeletions	Web Version	Print Version		
Privacy by 🖾 SafeSubscribesM	Read our message	Little Yellow Book	3q29 duplications and microduplications	Web Version	Print Version		
-	for new families.	Unique Tales for Siblings	CTNNB1 syndrome			Quick Read	
Find us on	You are not alone!	Magazine Downloads	SETD5			Quick Read	
f 🗾 🚻 🕥		International Membership	Chromosome 4				
		UK Membership	4p 8p Translocation	Web Version	Print Version		
Tweets		Useful Links	4p duplications	Web Version	Print Version	Quick Read	
			4q deletions between 4q11 and 4q22	Web Version	Print Version		
#getgarytobeth	Click here to download our free g on specific chromosome disorde		4q deletions between 4q21and 4q22	Web Version	Print Version		
@MichellePeacoc7			4q deletions between 4q21and 4q31	Web Version	Print Version		
@GaryBarlow	News		4q deletions from 4q31and beyond	Web Version	Print Version		
@Unique_charity	News		4q duplications	Web Version	Print Version		
@GeneticAll_UK	Unique Wins Prestigious	Job Opportunity with U	Chromosome 5				
#getgarytobeths13th #mylittlepwsdiva	European Award 24 February 2016	10 February 2016	5p Trisomy 5p Duplications of 5p15	Web Version	Print Version		
@GeneticDisUK		We are recruiting a	5p Trisomy 5p Inverted duplication and deletion of 5p	Web Version	Print Version		
	We are thrilled to have won the Eurordis Patient Organisation Award 2016. This prestigious award recognises the service we provide to	Fundraising Officer maternity cover) to work a	5p Trisomy Duplications of 5p13 and 5p14	Web Version	Print Version		
		base in Oxted, Surr		Web Version	Print Version		
		opportunity to develop your		Web Version	Print Version		
	all those affected by rare chromosome disorders, their families and the	skills and help Unique's development. For more	5q deletions including 5q22	Web Version	Print Version	Quick Read	
#Jet dar Opethsisth	doctors & other medical professionals	and to apply, please click h	5q14.3 deletions	Web Version	Print Version		
			PURA and 5q31	Web Version	Print Version		
			Chromosome 6				
			6p Deletions from 6p25 and the end of the chromosome	Web Version	Print Version		
			6p deletions			Quick Read	
			An dealer Prove	Mark March	Distant		

3p25 deletion and SETD5

What causes SETD5 syndrome?

When children are conceived their parents' genetic material is copied in the egg and sperm that makes a new child. The biological copying method is not perfect and occasionally random, rare changes occur in the genetic code of children that are not seen in the DNA of their parents. SETD5 syndrome occurs when one of these random, rare changes affects the *SETD5* gene on chromosome 3. These types of change happen naturally in all species - humans, plants and animals - and are not due to your lifestyle or anything you did. In most families the DNA change in *SETD5* occurs out of the blue (de novo). In a minority of families, one parent may have the same genetic change as their child, but this is very rare.

Can it happen again?

The possibility of having another child affected by a rare gene disorder depends on the genetic code of the parents. For SETD5 syndrome where parents do not carry the same *SETD5* change as their child, the chances of having another child are little higher than for anyone else in the population. If the genetic analysis of the parents of a child with SETD5 syndrome shows that they carry the same change in the *SETD5* gene, the chances of it happening again are much higher. Each family situation is different and a clinical geneticist or genetic counsellor can give you specific advice for your family.

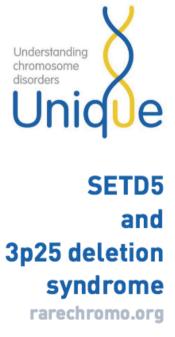
How common is SETD5 syndrome?

SETD5 syndrome is a rare condition and was only identified for the first time in 2014. The first study identified changes (mutations) in the *SETD5* gene as one of the commoner causes of intellectual disability with autism and behavioural problems. In a recent study of 1000 children with moderate to severe intellectual disability a change in the *SETD5* gene was found in 6 individuals (0.7%).

Families say ...

"Our daughter made us see the world through different eyes. She is a gift to us." - 11 years

"Our son is very fond of electronics, seems to know a lot and gets excited to help others. He loves all special Olympics activities he participates in. Always excited to go and be part of the group. Always keeps us on our toes, very loving and loves to talk. One of the most special boys we have ever known." - 15 years

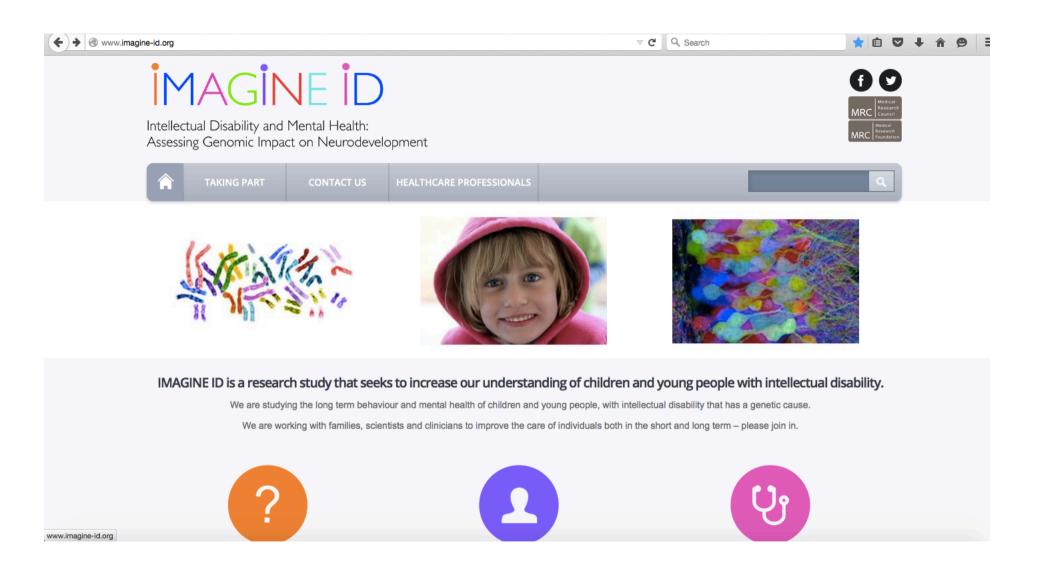

Inform Network Support

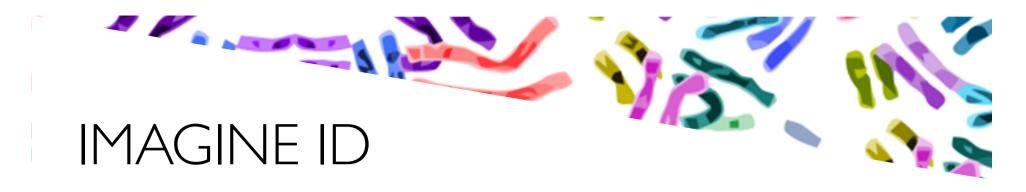
Rare Chromosome Disorder Support Group, GI, The Stables, Station Road West, Oxted, Surrey RH8 9EE, UK Tel/Fax: +44[0]1883 723356 info@rarechromo.org

This guide is not a substitute for personal medical advice. Families should consult a medically qualified clinician in all matters relating to genetic diagnosis, management and health. Information on genetic changes is a very fast-moving field and while the information in this guide is believed to be the best available at the time of publication, some facts may later change. Unique does its best to keep abreast of changing information and to review its published guides as needed. The guide was compiled by Dr Lucy Raymond, Reader in Neurogenetics and Honorary Consultant in Medical Genetics, University of Cambridge, UK 2014 Version 1 (PM) Copyright © Unique 2014

Rare Chromosome Disorder Support Group Charity Number 1110661 Registered in England and Wales Company Number 5460413

Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment


Prof Lucy Raymond, David Skuse, Jeremy Hall, Marianne van den Bree


Cambridge University Hospitals **NHS**

www.imagine-id.org

- Aims to better understand how the genome affects the long term development, behaviour and mental health of children with intellectual disability
- MRC funded national study over 5 years
- Multidisciplinary team from University College London, University of Cambridge, and Cardiff University
- Aim to recruit 10,000 patients by September 2019

Inclusion Criteria

Child is between 4 and 18 years old

Has likely pathogenic SNV or CNV(s)

Has intellectual disability, learning difficulties, or developmental delay

DAWBA Report

Institute of Child Health University College London 30 Guilford Street London, VC1N 1EH

Assessing Genomic Impact on Neurodevelopmen

THIS IS AN EXAMPLE REPORT. THE REPORT YOU RECEIVE WILL BE PRODUCED BASED ON THE INFORMATION PROVIDED IN THE ONLINE ASSESSMENT.

25th November 2014

IMAGINE ID Development and Wellbeing Assessement Report

Dear Parents of John

Re: John Smith, DoB: 01/01/2000, Address: 30 Guilford Street, London, WC1N 1EH

Thank you for completing the Development and Wellbeing Assessment (DAWBA) questionnaire as part of IMAGINE ID study. The DAWBA collects information about a range of common behavioural and emotional problems of childhood, and analyses this information to produce a report of possible disorders of clinical significance. This report relies on parental information and is not a substitute for a clinical examination. It may, however, prove useful in identifying areas of need in terms of furthis assessment and clinical or educational management.

Your questionnaire responses have been reviewed by a doctor who is part of the IMAGINE ID research group.

John's strengths were identified as being his lively and easy-going nature. He is polite and has a good sense of humour. John enjoys sports and family activities.

The DAWBA highlighted concerns in the following areas:

- Physical health
- Sleep
- Social communication
- Attention, concentration, and over-activity
- Anxiety
- Outbursts of temper

Here is a summary of your results:

John has been diagnosed with a duplication of \$421.1. Relating to this he has some difficulties with his physical health including his hearing and a heart problem for which he had surgery as a baby. John also has a moderate learning disability.

The assessment from the DAWBA questionnaire has been obtained for research purposes. Please do not use this report as a

IMAGINE ID

Lealth:

John has difficulty failing and staying asleep. He takes several hours to fall asleep and often wakes up at night and moves into his parents' bed. John takes melatonin to help his sleep.

The DAWBA identified John as having some difficulties with social communication. John has difficulty with non-verbal social interaction and peer relationships. At present, these difficulties seem to be best explained by his developmental level which is lower than his chronological age. If concerns remain as John develops, furthis assessment may be beneficial.

John has difficulties with attention and over-activity which is in keeping with his diagnosis of attention deficit hyperactivity disorder (ADHD). These difficulties have a significant impact on John's learning and family life. The difficulties are currently managed by providing John with lots of short activities to help him re-focus, and by offering him regular prompts and reminders.

John experiences anxiety about a number of things; these include the dark, crowds, and separation from his mother. John gets very upset when having to leave his mother to go to school or other activities on his own. John's fear of the dark means that he prefers to sleep with the lights on and usually needs a parent in the room to settle. In addition, John's fear of crowds lead him to avoid social situations such as parties. John's fears are triggered frequently and have a significant impact on his quality of life; as such they warrant further assessment and management.

John has temper outbursts approximately 3 times a week. During these outbursts John shouts, cries, and says negative things about himself, John's outbursts mainly occur at home, but also occur at school. The triggers for these episodes are not always clear but are often related to tiredness or being told he cannot have something he wants. John's family currently manage his temper outbursts by using appropriate strategies.

John and his family receive input from range of local services; in particular, John's school was described as being very supportive of John's needs. In addition they are flexible and supportive of each other.

Yours sincerely,

IMAGINE ID Team

The assessment from the DAWBA questionnaire has been obtained for research purposes. Please do not use this report as a substitute for a clinical assessment.

NATURE GENETICS | LETTER

A *de novo* paradigm for mental retardation

Lisenka E L M Vissers, Joep de Ligt, Christian Gilissen, Irene Janssen, Marloes S Petra de Vries, Bart van Lier, Peer Arts, Nienke Wieskamp, Marisol del Rosario, B van Bon, Alexander Hoischen, Bert B A de Vries, Han G Brunner & Joris A Veltm

Affiliations | Contributions | Corresponding authors

Nature Genetics 42, 1109–1112 (2010) | doi:10.1038/ng.712 Received 11 August 2010 | Accepted 18 October 2010 | Published online 14 Novem LETTER

doi:10.1038/nature14135

Large-scale discovery of novel genetic causes of developmental disorders

The Deciphering Developmental Disorders Study*

of children with severe developmental disorders of probable genetic ing the same gene.

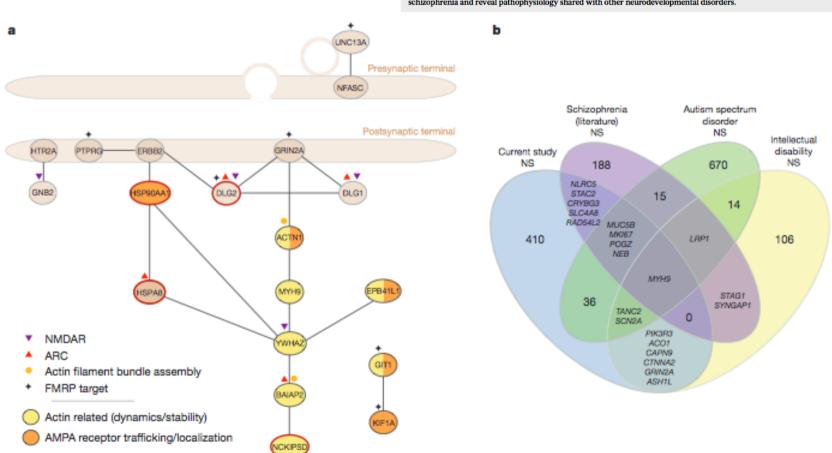
Despite three decades of successful, predominantly phenotype-driven were analysed jointly in the following analyses, allowing, for example, discovery of the genetic causes of monogenic disorders¹, up to half the identification of compound heterozygous CNVs and SNVs affect-

>1000 trios with intellectual disability

Patterns and rates of exonic de novo mutations in autism spectrum disorders

Benjamin M. Neale^{1,2}, Yan Kou^{3,4}, Li Liu⁵, Avi Ma'ayan³, Kaitlin E. Samocha^{1,2}, Aniko Sabo⁶, Chiao-Feng Lin⁷, Christine Stevens², Li-San Wang⁷, Vladimir Makarov^{4,8}, Paz Polak^{2,9}, Seungtai Yoon^{4,8}, Jared Maguire², Emily L. Crawford¹⁰, Nicholas G. Campbell¹⁰, Evan T. Geller⁷, Otto Valladares⁷, Chad Schafer⁵, Han Liu¹¹, Tuo Zhao¹¹, Guiqing Cai^{4,8}, Jayon Lihm^{4,8}, Ruth Dannenfelser³, Omar Jabado¹², Zuleyma Peralta¹², Uma Nagaswamy⁶, Donna Muzny⁶, Jeffrey G. Reid⁶, Irene Newsham⁶, Yuanqing Wu⁶, Lora Lewis⁶, Yi Han⁶, Benjamin F. Voight^{2,13}, Elaine Lim^{1,2}, Elizabeth Rossin^{1,2}, Andrew Kirby^{1,2}, Jason Flannick², Menachem Fromer^{1,2}, Khalid Shakir², Tim Fennell², Kiran Garimella², Eric Banks², Ryan Poplin², Stacey Gabriel², Mark DePristo², Jack R. Wimbish¹⁴, Braden E. Boone¹⁴, Shawn E. Levy¹⁴, Catalina Betancur¹⁵, Shamil Sunyaev^{2,9}, Eric Boerwinkle^{6,16}, Joseph D. Buxbaum^{4,8,12,17}, Edwin H. Cook Jr¹⁸, Bernie Devlin¹⁹, Richard A. Gibbs⁶, Kathryn Roeder⁵, Gerard D. Schellenberg⁷ James S. Sutcliffe¹⁰ & Mark J. Daly^{1,2}

De novo mutations revealed by whole-exome sequencing are strongly associated with autism


Stephan J. Sanders¹, Michael T. Murtha¹, Abha R. Gupta^{2*}, John D. Murdoch^{1*}, Melanie J. Raubeson^{1*}, A. Jeremy Willsev^{1*}, A. Gulhan Ercan-Sencicek^{1*}, Nicholas M. DiLullo^{1*}, Neelroop N. Parikshak³, Jason L. Stein³, Michael F. Walker¹, Gordon T. Ober¹, Nicole A. Teran¹, Youeun Song¹, Paul El-Fishawy¹, Ryan C. Murtha¹, Murim Choi⁴, John D. Overton⁴, Robert D. Bjornson⁵, Nicholas J. Carriero⁵, Kyle A. Meyer⁶, Kaya Bilguvar⁷, Shrikant M. Mane⁸, Nenad Šestan⁶, Richard P. Lifton⁴, Murat Günel⁷, Kathrvn Roeder⁹, Daniel H. Geschwind³, Bernie Devlin¹⁰ & Matthew W. State¹

1549 variants that are de novo in autism

De novo mutations in schizophrenia implicate synaptic networks

Menachem Fromer^{1,2}, Andrew J. Pocklington³, David H. Kavanagh³, Hywel J. Williams³, Sarah Dwyer³, Padhraig Gormley^{4,5}, Lyudmila Georgieva³, Elliott Rees³, Priit Palta^{4,6,7}, Douglas M. Ruderfer^{1,3}, Noa Carrera³, Isla Humphreys³, Jessica S. Johnson¹, Panos Roussos⁴, Douglas D. Barker², Eric Banks⁵, Vihra Milanova⁶, Seth G. Grant⁴, Eilis Hannon³, Samuel A. Rose², Kimberly Chambert⁴, Milind Mahajan¹, Edward M. Scolnick⁵, Jennifer L. Moran², George Kirova³, Aarno Palotie^{4,5,7}, Steven A. McCarroll^{2,5,10}, Peter Holmans³, Pamela Sklar^{1,11}, Michael J. Owen³, Shaun M. Purcell^{1,-2,12} & Michael C. O'Donovan³

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (*de novo*) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small *de nov* mutations, affecting one or a few nucleotides, are over-presented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-D-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-leniched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.

ARTICLE

RESEARCH

Genetics of speech and language disorders

Am. J. Hum. Genet. 67:357-368, 2000

The *SPCH1* Region on Human 7q31: Genomic Characterization of the Critical Interval and Localization of Translocations Associated with Speech and Language Disorder

Cecilia S. L. Lai,^{1,*} Simon E. Fisher,^{1,*} Jane A. Hurst,² Elaine R. Levy,¹ Shirley Hodgson,³ Margaret Fox,⁴ Stephen Jeremiah,⁴ Susan Povey,⁴ D. Curtis Jamison,⁵ Eric D. Green,⁵ Faraneh Vargha-Khadem,⁶ and Anthony P. Monaco¹

³Wellcome Trust Centre for Human Genetics, Oxford University, ²Department of Clinical Genetics, Oxford Radcliffe Hospital, Oxford; ³Genetics Centre, Guy's Hospital, ⁴MRC Human Biochemical Genetics Unit, University College London, and ⁴Cognitive Neuroscience Unit, Institute of Child Health, Mecklenburgh Square, London; and ⁵National Human Genome Research Institute, National Institutes of Health, Bethesda

The KE family is a large three-generation pedigree in which half the members are affected with a severe speech and language disorder that is transmitted as an autosomal dominant monogenic trait. In previously published work, we localized the gene responsible (*SPCH1*) to a 5.6-cM region of 7q31 between D7S2459 present study, we have employed bioinformatic analyses to assemble a detailed BAC-/PAC-be this interval, containing 152 sequence tagged sites (STSs), 20 known genes, and >7.75 Mb o sequence. We screened the affected chromosome 7 from the KE family with 120 of these S 100.1cb, but we did not detect any avidence of a microdelation. Noval polymorphic markers

FOXP2

Multiple locii but no more single genes as yet

Genea	Chromosome	Uniprot Protein Name					
1TP2C2	16q24.1	Calcium-transporting ATPase type 2C member 2					
4UTS2	7q11.22	Autism susceptibility gene 2 protein					
BCL11A (CTIP1)	2p16.1	B-cell lymphoma/leukemia 11A					
CMIP	16q23.2	C-Maf-inducing protein					
CNTNAP2 (CASPR2)	7q35	Contactin-associated protein-like 2					
CTNND2	5p15.2	Catenin delta-2					
DCDC2	6p22.3	Doublecortin domain-containing protein 2					
DOCK4	7q31.1	Dedicator of cytokinesis protein 4					
DYX1C1	15q21.3	Dyslexia susceptibility 1 candidate gene 1 protein					
ERC1 (ELKS)	12p13.33	ELKS/Rab6-interacting/CAST family member 1					
FOXP1	3p13	Forkhead box protein P1					
FOXP2	7q31.1	Forkhead box protein P2					
GCFC2 (C2ORF3)	2p12	GC-rich sequence DNA-binding factor 2					
GNPTAB	12q23.2	N-acetylglucosamine-1-phosphotransferase subunits alpha/beta					
GNPTG	16p13.3	N-acetylglucosamine-1-phosphotransferase subunit gamma					
GRIN2A (NR2A) 16p13.2		Glutamate receptor ionotropic, NMDA 2A					
IMMP2L 7q31.1		Mitochondrial inner membrane protease subunit 2					
KIAA0319	6p22.3	Dyslexia-associated protein KIAA0319					
MRPL19	2p12	39S ribosomal protein L19, mitochondrial					
NAGPA	16p13.3	N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase					
NFXL1	4p12	NF-X1-type zinc finger protein NFXL1					
NOP9	14q12	Nucleolar protein 9					
PCDH11X	Xq21.31	Protocadherin-11 X-linked					
PCDH11Y	Yp11.2	Protocadherin-11 Y-linked					
PLCL1 (PRIP)	2q33.1	Inactive phospholipase C-like protein 1					
ROBO1	3p12.3	Roundabout homolog 1					
ROBO2	3p12.3	Roundabout homolog 2					
SCN11A	3p22.2	Sodium channel protein type 11 subunit alpha					
SETBP1 18q12.3		SET-binding protein					
SRPX2	Xq22.1	Sushi repeat-containing protein SRPX2					
TBR1	2q24.2	T-box brain protein 1					
TM4SF20	2q36.3	Transmembrane 4 L6 family member 20					
ZNF277	7q31.1	Zinc finger protein 277					

Invaluable tools for all

- DECIPHER https://decipher.sanger.ac.uk/
- ExAC http://exac.broadinstitute.org/
- ClinVar http://www.ncbi.nlm.nih.gov/clinvar/
- UNIQUE http://www.rarechromo.org
- Arrays 10-15% yield
- X inactivation if X linked and familial
- Limited single gene analysis of 20-30 genes further 10-20%
- Whole exome and whole genome sequence
- Recruitment into longitudinal studies of phenotypes
- Parents
- Clinical skills....!!!