

Peripheral Neuropathy EPNS Neuromuscular Course

Dr Imelda Hughes
Consultant Paediatric Neurologist
Royal Manchester Children's Hospital
Dr Rahul Phadke
Dubowitz Neuromuscular Centre
London

Declarations

- » PI in clinical trials for PTC Therapeutics, Summit
- » Consultancy for Santhera and Biogen
- » Conference fees and travel by PTC therapeutics

Topics

- Acquired neuropathy
- Genetic neuropathy
- Genetic multisystem disorders which include neuropathy

Acquired neuropathy

- Guillaine-Barre syndrome
 - AIDP
 - AMAN
 - AMSAN
- CIDP
- Drugs/toxins

GBS

Required features

- Progressive weakness >1 limb
- Areflexia, varying degree

Supportive features

- Progression stopped by 4 wks
- Relative symmetry
- Cranial N involvement
- Autonomic dysfunction
- ↑CSF protein, <10WBC
- Abnormal neurophysiology

GBS

- Pain & paraesthesiae common
- May be autonomic dysfunction, hypertension, urinary retention, cardiac dysrythmia

- 7-15% require ventilation, ↑risk rapid onset, cranial N involvement, ↑CSF protein
- Management; Supportive, IVIG, plasmapheresis

GBS Differential diagnosis

- Botulism
- Myelopathy
- Viral myositis
- Porphyria
- Tick bite paralysis
- Toxins

GBS types

- AIDP
 - Most common
 - Neurophysiology slow NCV, dispersion, conduction block

- 1% Miller Fisher syndrome (GQ1b ab)
- AMAN
 - C jejuni (GM1 ab)
- AMSAN

CIDP

- May be
 - Monophasic with progression over >2 months

- Slowly progressive
- Relapsing remitting course

CIDP diagnosis

- Neurophysiology
 - Generalised slowing NCV
 - Dispersion CMAP
 - Conduction block
- ↑CSF protein
- Exclusion of other causes
- Biopsy
 - Demyelination, inflammatory cell infiltrate

Drugs/toxins

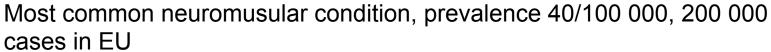
- Heavy metals
- Organophosphates
- Drugs
 - Chemotherapy
 - Isoniazid
 - Pyridoxine
 - Itraconazole
 - Thalidomide

Chemotherapy induced peripheral neuropathy (CIPN)

- » Vinca alkaloids, platinum compounds
- » Vincristine
 - » incidence increases with cumulative dose
 - » 35% neuropathic pain
 - » 78-100% neuropathy of any grade
 - » neurophysiology; axonal, motor predominant
- » Cis-platinin
 - » incidence & characteristics less well defined
- » Concomitant meds may increase risk
- » Adult survivors 20% sensory, 17.5% motor impairment

Genetic neuropathy

- Classification has been confused & confusing
- Various terms have been used; peroneal muscular atrophy, HMSN and CMT


Genetic neuropathy

- CMT motor and sensory neuropathy
- HNPP hereditary neuropathy with a liability to pressure palsies

- dHMN distal hereditary motor neuropathy
- HSAN hereditary sensory and autonomic neuropathy

CMT

CMT Clinical features

Foot deformity

CMT clinical features

- Clumsy gait
- Tremor
- Falls
- Pain usually secondary to deformity
- Positive sensory symptoms uncommon

- Other features
 - Scoliosis
 - Cranial nerve palsy

CMT examination findings

- Muscle wasting
 - Peroneal muscles
 - Intrinsic hand muscles
- Muscle weakness
 - Ankle dorsiflexion, eversion
 - intrinsic hand muscles
- Absent reflexes
- Sensory loss

CMT severe forms

- Early onset
- Severe hand / foot weakness
- Proximal weakness
- May develop respiratory problems

CMT classification

- Demyelinating
 - NCV <38m/s upper limb
- Axonal
 - NCV >38m/s upper limb
- Intermediate
 - NCV 25-45m/s
 - X-linked most common GJB1

CMT classification

- CMT1 demyelinating
- CMT2 axonal
- DSN/CHN
- CMT4

HNPP

 Recurrent nerve palsy at compression sites (common peroneal, radial)

- Mildly slow NCV
- 85% deletion 17p11.2
- 15% PMP22 mutation
- can also present as mild CMT

dHMN

- Rare
- Presentation similar to CMT
- Neurophysiology motor conduction only affected
- Genes
 - HSPB1
 - HSPB8
 - GARS/BSCL2 upper limb predominance

Genetic testing

- Benefits
 - Confirms diagnosis
 - Accurate genetic advice to family
 - Non-invasive diagnostic testing
- Problems
 - Limited availability
 - Few common genes
 - Many rare genes

CMT genes

	Number of
	genes
CMT 1	9
Intermediate	5
CMT2	25 AD
	8 AR
CMT4	13

MPZ Phenotypes

CMT1B,
Dominant intermediate type D
CMT4E
DSN
CMT2I & 2J

Genetic testing in CMT

Reilly M

CMT1 genetics

- CMT1a
 - 17p11.22 duplication 70% CMT1 Europe (10% sporadic)
 - PMP22 point mutation (also DSN/CHN)
 - CMT1b
 - 10% CMT1 MPZ mutation (also DSN/CHN & CMT2)

- Other genes rare
 - EGR2, LITAF, SIMPLE, NEFL

CHN/DSN Genetics

- PMP22 mutation
- MPZ mutation
- EGR2 mutation
- PRX mutation

CMT 2 genetics

- Mutations in 8 genes account for 25%
- Clinical phenotype important
 - "classic" CMT
 - CMT2A MFN2 (20% CMT2)
 - MPZ, NEFL, HSPB1, HSPB8
 - Prominent sensory involvement (like HSAN1)
 - CMT 2B RAB7
 - Upper limb predominance
 - GARS, BSCL2
 - CMT2C TRPV4 skeletal dysplasia, neuropathy

CMT4 genetics

- 13 genes to date
 - CMT4A GDAP1 gene, also axonal, commonest recessive, may be vocal cord/diaphragmatic involvement, rare AD mutations in CMT2
 - CMT4B1 MTNR2 vocal cord paresis, scoliosis
 - CMT4C SH3TC2, scoliosis
 - CMT4D NDRG1, Balkan gypsy population, deafness,
 - CTPD1, CCFDN congenital cataract, facial dysmorphism, neuropathy

- LMNA, axonal, severe

» Giant axonal neuropathy, GAN

» weakness, ataxia, frizzy hair, cognitive impairment, MRI white matter abnormality, also mild cases

» SMARD1, IGHMBP2

» diaphragmatic weakness/eventration, distal weakness

» sensorimotor polyneuropathy

RAPID COMMUNICATION

Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment

Annet M. Bosch - Nico G. G. M. Abeling - Lodewijk Libt - Hennie Knoester -W. Ludo van der Pol - Alida E. M. Stroomer - Ronald J. Wanders - Gepke Visser -Frits A. Wijburg - Marinus Duran - Hans R. Waterham

BVVL

Cranial neuropathies, deafness Diaphragmatic weakness Sensorimotor polyneuropathy SLC52A1, SLC52A2, SLC52A3

CMTX

- Consider when no male to male transmission
- GJB1 (connexin)
 - Occassionally white matter abnormality on MRI, may be transient severe CNS involvement (ADEM like)

CMT with pyramidal signs

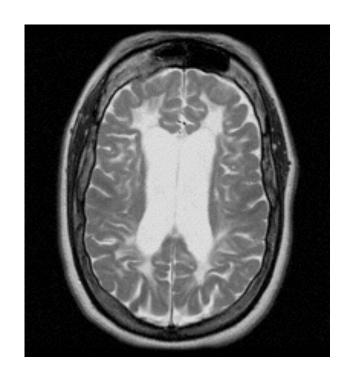
Overlap with HSP with distal amyotrophy

CMT Management

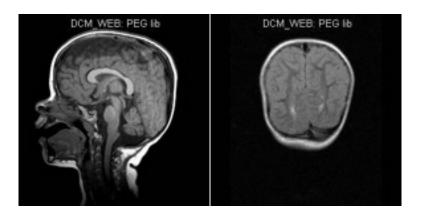
- Prevention/limitation of deformity
 - Splinting
 - stretching
 - casting
- Surgery
- Supportive for severe

HSAN clinicial features

- Injuries
 - Trauma, burns
 - Self inflicted injury
 - Infections
 - Charcot joints
- Anhidrosis
 - Recurrent pyrexia
- May be associated LD


HSAN

- HSAN1
 - AD onset 2nd decade, SPTLC1/SPTLC2
- HSAN2
 - AR HSN2, severe, mild anhydrosis
- HSAN3 Riley-Day syndrome
- HSAN4
 - AR NTRK1 mutations, severe, anhydrosis, LD


HSAN5

Neuropathy in multisystem disorders

- Leucodystrophies
 - Rarely may be presenting feature

INAD PLA2G6

Neuropathy in multisystem disorders

- Mitochondrial disorders
 - often unrecognisable due to prominent central features, may assist with syndrome classification

- Peroxisomal disorders
- CDG
- Refsum disease
- Fabry

Summary

- Neuropathy is relatively common
- May be acquired
- May be genetic
- May occur as part of a multisystem disorder in which it may be presenting feature or an essential clue