Acute disturbance of motor function EPNS Training Course Neuromuscular Disorders Budapest, 6-7 April 2017 Thomas Sejersen, Karolinska University Hospital thomas.sejersen@ki.se # "Today's menu": - Diagnosis av acute disturbance of motor function - "Urgent" conditions - A few other acute conditions Symptom Diagnosis Treatment # Diagnosis av acute disturbance of motor function: - 1. Type of abnormal motor function? - 2. Anatomical level/extent? - 3. Underlying cause? ## 1. Type of abnormal motor function? - Muscle weakness/hypotonia - Spasticity - "Movement disorder" - Ataxia - Dyskinesia - Dystonia - Atetosis - Myoclonus - Tics ## 2. Anatomical level/extent? - 1. What muscle groups are engaged? - 2. Level of lesion? ### Physical exam findings each anatomic level: | Localization | Pattern of weakness | Sensory loss | Reflexes | |--|--|--|---| | Cerebral cortex,
brainstem, or
spinal cord | Distal > proximal,
extensors > flexors,
hemiparesis or single limb | May be present depending on whether sensory tracts or cortex are involved | Elevated however,
reflexes may be
decreased initially
but later increase | | Spinal cord | Distal > proximal,
extensors > flexors,
paraparesis, quadriparesis,
rarely hemiparesis | May be present depending on whether
sensory tracts are involved; loss of
sensation below a certain spinal level
is diagnostic | Elevated however,
reflexes may be
decreased initially
but later increase | | Anterior horn cell | Proximal and distal, fasciculations are prominent | Absent | Decreased if muscle
bulk is severely
decreased; increased
in ALS | | Peripheral nerve | In the distribution of the nerve, or diffusely present as stocking/glove weakness | Present | Decreased | | Neuromuscular junction | First in eye muscles, neck
extensors, pharynx,
diaphragm, followed by more
generalized weakness | Absent | Normal, decreased if muscle is paralyzed | | Muscle | Proximal | Absent | Normal unless muscle severely weak | # 3. Underlying cause? Neuromuscular disorder (genetic) Autoimmune cause Infection Toxic/metabolic cause Trauma Compression Hypoxia Vascular events Systemic disorder Epilepsy Fatigue Conversion syndrome Pain Myalgic encephalomyelitis Catatonia # Supraspinal level **Infection/inflammation** (meningitis, encephalitis, ADEM, MS) -> LP with CSF analysis, bacterial culture, virus isolation, brain MRI **Tetanus** -> Clinical diagn, spatula test Hypoxic/ischemic insult (near drowning, CO poisoning) -> Blood gas, EEG, neuroradiology, carboxyhemoglobin Vascular events (stroke, TIA, vasculitis) ->Neuroradiology, coagulation panel, echocardiogram Seizures (e.g. Todd's paralysis) -> B-glu, electrolytes, EEG, neurorad, b-gas, toxic screen Table 4.1 Acute disturbance of motor function at the supraspinal level | Condition | Typical symptom/finding | Initial diagnostic aid | |---|--|--| | Brain infection, postinfectious
(meningitis, encephalitis,
ADEM, multiple sclerosis) | Motor dysfunction typically accompanied by brain symptoms
(See Chaps. 14 and 17). MS may initially present solely
with motor disturbance (paralysis, ataxia, spasms) | LP with CSF analysis, bacterial culture,
virus isolation, serology, brain MRI.
See Chaps. 14 and 17 | | Toxic/metabolic | See Chap. 9 | Blood gas. Toxicology screens. For acute
neurometabolic crisis, see Chap. 9 | | Traumatic brain injury | Acute motor dysfunction typically accompanied by other CNS
dysfunctions | Neuroradiology, ICP. See Chap. 12 | | Hypoxic/ischemic insult
(near drowning, CO poisoning) | See Chap. 8 | Blood gas, EEG, neuroradiology (MRI with
spectroscopy). CO poisoning: carboxyhemo-
globin. See Chap. 8 | | Tumor | Focal weakness/paralysis. May be accompanied by other brain
symptoms. See Chap. 11 | Neuroradiology. See also Chap. 11 | | Congenital brain malformation | | | | Chiari malformation: cerebellar tonsils
displaced downward through
foramen magnum | Headache, fatigue, muscle weakness in the head and face,
difficulty swallowing, dizziness, nausea, impaired
coordination, and, in severe cases, paralysis (of hands) | MRI of brain (and spinal cord) | | Vascular events (stroke, transient
ischemic attack, vasculitis) [6, 7, 16] | See Chap. 16 | Neuroradiology, hypercoagulability panel,
echocardiogram. See Chap. 16, Fig. 1 | | Seizures (e.g., Todd's paralysis, i.e.,
focal weakness in part of body after
seizure) | Transient weakness in, e.g., hand, arm, or leg after (partial)
seizure. May also affect speech, vision, or gaze. Usually
subsides within 48 h | Blood glucose, electrolytes, EEG, neuroradiol-
ogy, blood gas, toxic screens. See Chap. 2 | | Alternating hemiplegia [17, 18] | Diagnostic criteria: (1) onset before 18 months of age, (2) repeated episodes of hemiplegia, (3) episodes of bilateral hemiplegia/quadriplegia, (4) other paroxysmal attacks (tonic/ dystonic attacks, nystagmus, strabismus, dyspnea), (5) immediate disappearance of symptoms upon sleep, (6) developmental delay, (7) not attributable to other known cause | Clinical diagnosis. brain MRI to exclude
structural/vascular/metabolic Brain disorder.
Metabolic screening to exclude mitochondrial
disorders, CSF/blood glucose to exclude
glucose transporter defects, thyroid panel to
exclude periodic paralysis with thyrotoxicosis
video EEG to exclude epilepsy | | Conversion disorder | Motor symptoms may present as, e.g., paralysis, impaired
balance, gait problems, swallowing difficulties, dystonia,
tremor, myoclonus, or other movement disorder | Clinical assessment, neurological findings inconsistent with symptom. See Chap. 7 | # Spinal level: **Infection/inflammation** (epidural abscess, osteomyelitis, transverse myelitis, neuromyelitis optica, poliomyelitis, West Nile virus) ->Spine MRI, LP (CSF analysis, bact culture, enterovirus PCR/immunidiagnostics, s-NMO IgG) #### Trauma ->Spine X-ray and CT/MRI #### **Tumor** -> Spine CT/MRI Table 4.2 Acute disturbance of motor function at the level of the spinal cord | Condition | Typical symptom/finding | Initial diagnostic aid | |---|--|---| | Infectious/postinfectious (epidural abscess,
osteomyelitis, transverse myelitis [19],
neuromyelitis optica [20], poliomyelitis, West
Nile virus) | Progressive weakness in lower/all extremities,
paresthesia, sensory loss, bladder/bowel
incontinence, midline back pain, malaise.
See Chaps. 14 and 17 | Spine MRI, LP with CSF analysis, bacterial culture,
enterovirus PCR/immunodiagnostics, s-NMO
IgG elevated in neuromyelitis optica. See also
Chaps. 14 and 17 | | Trauma | Acute weakness in lower/all extremeties,
pareshesis, sensory loss, bladder/bowel
incontinence, pain, malaise | Spine X-ray and CT or MRI | | Tumor | See Chap. 12 | Spine CT or MRI | | Motor neuron disease (spinal muscular atrophy) | Generalized (symmetrical) muscle weakness with
spared sensation. Fasciculations may occur
(tongue). Decreased muscle tone and
peripheral reflexes | Genetic testing smn1 gene (EMG) | | Spinal cord malformation (dysraphism): spina
bifida, diastematomyelia, spinal dermal sinus,
spinal lipoma, tethered cord, syringomyelia | Chronic pain, abnormal sensation, paralysis, loss
of urinary/bowel control, foot and spinal
deformities. Signs of the disorder usually
develop slowly, but sudden onset may occur | Spine CT or MRI | | Foramen magnum stenosis (e.g., achondroplasia) | Apnea, paralysis (quadriplegia), muscle hypotonia | Brain and spine CT or MRI. Sleep study
(polysomnography) | ## Peripheral motor nerve: Autoimmune (AIDP/Guillain-Barré, CIDP) -> Neurophysiology (nerve conduction) **Trauma** (brachial plexus injury, focal nerve compression) ->Neurophysiology (EMG, nerve conduction), MRI #### **Critical illness polyneuropathy** -> EMG, nerve conduction **Drug-induced neuropathy** (e.g. Vincristine, cis-platinin, metronidazol, amiodarone) -> EMG, nerve conduction Table 4.3 Acute disturbance of motor function at the level of the peripheral motor nerve | Condition | Typical symptom/finding | Initial diagnostic aid | |---|--|---| | Autoimmune (AIDP, CIDP) | Frequently history of preceding infection. Initial abnormal sensation and motor function in feet/legs. | Neurophysiology (nerve conduction study):
conduction slowing/block | | Guillain-Barré syndrome [9-11] | Muscle weakness may progress to involve facial
muscles and respiratory muscles resulting in
respiratory failure. See Sect. 4.4.2.3 | LP with CSF analysis: elevated CSF protein,
normal/slightly elevated lymphocytes | | Hereditary neuropathies | Distal symmetric muscle weakness with/without
abnormal sensation. Rarely acute presentation.
Pes cavus, family history common | Nerve conduction study of motor and sensory
nerves demonstrates reduced nerve
conduction speed (myelin damage) or
reduced nerve conduction strength
(axonal damage). Genetic testing | | Facial palsy (congenital 8 %, Bell's palsy
42 %, infection (neuroborreliosis—Lyme
disease) 13 %, trauma 21 %, leukemia/
tumor 2 %, hypertension, otitis media,
mastoiditis) | Dysfunction of cranial nerve VII (facial nerve) resulting
in paresis of muscles on affected side. Lyme disease
frequent cause in areas endemic for Borrelia | Cranial nerve examination, eye closure (secure
corneal lubrication), blood pressure, Borrelia
serology spinal fluid+serum, serology herpes
zoster, EBV, CMV, blood count, otoscopy,
oral and parotid exam | | Toxic/metabolic (chemotherapy, deficiency
vitamin B12) | Initially paresthesia and sensory loss in a stocking
distribution with later appearance of muscle
weakness | Neurophysiology (nerve conduction study), vit
B12 in blood, indirect markers homocysteine,
methylmalonic acid, and holotranscobalamin | | Trauma | | | | Brachial plexus injury | Obstetric brachial plexus palsy occurs in less than 1 %
of live births and may result in pain, loss of sensation,
or paralysis/weakness | Neurophysiology (EMG, nerve conduction
study), MRI | | Focal nerve compression (e.g., following
awkward positioning in deep sleep) | Flaccid paralysis in muscle(s) supplied by affected nerve
(e.g., radial nerve, common ulnar nerve). Sensory
loss, decreased reflexes | Nerve conduction study | | Critical illness polyneuropathy [21–23] | CIP is a frequent complication of critical illness, often
together with CIM. It presents as flaccid weakness,
usually symmetrical and sometimes severe, prolonged
weaning from mechanical ventilation, muscle wasting | EMG, nerve conduction study | ## Neuromuscular junction: Infection: infant botulism ->Botulinum toxin in stool Autoimmune: Myasthenia gravis -> Ach rec a.b., MuSK a.b., LRP4 a.b., rep nerve stim, sf-EMG **Snake venom** (neurotoxins mostly in elapid snake species) -> History, clin exam. BP, neurol assessm., ECG Table 4.4 Acute disturbance of motor function at the level of the neuromuscular junction | Condition | Typical symptom/finding | Initial diagnostic aid | |---|---|---| | Infection: infant botulism [13] | Symptoms typically start 18–36 h after toxin ingestion.
Constipation, muscle weakness, drooping eyelids,
ophthalmoplegia, swallowing difficulty, drooling | Botulinum toxin in stool | | | Hypotonia and weak reflexes | EMG with repetitive nerve stimulation (decrement),
single-fiber EMG | | Autoimmune: myasthenia gravis (MG) [12] | Transient neonatal MG: generalized muscle weakness,
hypotonia, poor suck, respiratory difficulty | Anti-ACh receptor antibodies, anti-MuSK antibodies,
EMG with repetitive nerve stimulation (decrement),
single-fiber EMG | | Hereditary congenital myasthenia | Generalized weakness, hypotonia, drooping eyelids,
ophthalmoplegia, and delays in motor skills (crawling,
sitting, and walking). Babies may have poor head
control and difficulty feeding | EMG with repetitive nerve stimulation (decrement),
single-fiber EMG, genetic testing | | Snake venom (neurotoxins, mostly found in elapid snake species) | Presynaptic neurotoxins (e.g., Elapids, Viperids):
progressive paralysis with onset >1 h after bite,
postsynaptic neurotoxins (many elapids, e.g., cobra);
flaccid paralysis reversible with antivenom therapy | History and clinical examination. Blood pressure,
neurological assessment. ECG if general condition
affected | | | Dendrotoxins and fasciculins (e.g., mamba, rattlesnakes):
spasms, fasciculations, tetany often in <1 h from bite | Hemoglobin, complete blood count, serum creatine
kinase, blood gas, coagulation status (INT, aPTT,
D-dimer), s-creatinine. Repeated tests over 24 h | ### Skeleletal muscle: **Virus infection** (coxsackie, infl, parainfl, EBV, adenovirus, Dengue fever, Lassa fever ->Serology, virus isolation, PCR #### **Brucellosis (zoonisis)** -> Brucella a.b., culture, PCR **Ricketsia** (e.g. typhus, Q-fever, Mediterranean spotted fever) ->Typical clin presentation, PCR ### Skeleletal muscle: Malignant hyperthermia **Hereditary NMDs** Intensive care myopathy Hypokalemic periodic paralysis -> s-K, Exercise EMG, mutation SCN4A, CACNA1S Hyperkalemic periodic paralysis -> s-K/electrolytes, ECG, mutation SCN4A Table 4.5 Acute disturbance of motor function at the level of the skeletal muscle | Condition | Typical symptom/finding | Initial diagnostic aid | |---|---|---| | Virus infection (coxsackie, influenza
[24], parainfluenza, EBV, adenovirus,
Dengue fever, Lassa fever) | Myalgia, muscle weakness. General malaise, fever,
headache. Catarrhal symptoms | Serology tests, virus isolation, PCR | | Brucellosis (zoonosis) | Brucellosis: history of exposure to infected animals or
food. Fatigue, undulating fever, weakness, excessive
sweating, myalgia, abdominal pain, arthralgia | Brucella antibodies/culture/PCR | | Rickettsia (typhus, Q fever, Rocky
Mountain spotted fever,
Mediterranean spotted fever, African
tick-bite fever) | Transmitted by mites. Skin lesions/rash, fever, headache, myalgia | Typical clinical presentation, immunoassays, PCR | | Trichinosis (roundworm Trichinella spiralis) | Intake of undercooked pork, fish, or wild game. Diarrhea, facial edema, splinter hemorrhage under nails, myalgia | Exposure history, typical clinical presentation, lab:
blood count (eosinophilia, serum creatine kinase
elevation, immunoassays) | | Tetanus (neurotoxin tetanospasmin from
Clostridium tetani) | Insufficient protection tetanus vaccination? Muscle spasms
of jaw, trismus, frequent 1st symptom. Swallowing
difficulty, myalgia, and stiffness in neck, shoulders,
back. Progressive spasms and convulsions potentially
life threatening | Clinical diagnosis, spatula test (involuntary spasm of
jaw upon touching posterior pharyngeal wall) | | Dermatomyositis/polymyositis [25] | Symmetrical weakness, fatigue, malaise, weight loss, mild
fever, myalgia, pain in chest/abdomen, palpitations. In
dermatomyositis violet/dusky red rash most easily
detected in face, eyelids, around nails | Serum creatine kinase elevated, autoantibodies,
muscle biopsy, muscle MRI | | Metabolic (hypothyroidism, vitamin D
deficiency) | Vitamin D deficiency has been associated with muscle
weakness and pain in both adults and children | 25-OH-vitamin D in blood | | | Hypothyroidism may present as constipation, muscle
weakness, hypotonia, poor growth, poor mental
development, delayed development | Thyroid panel | Table 4.5 (continued) | Condition | Typical symptom/finding | Initial diagnostic aid | |--|--|---| | Hereditary muscle diseases: myopathies
and muscular dystrophies [26, 27] | Delayed motor milestones. Muscle weakness with
decreased distal reflexes. Contractures. Rarely presents
acutely. See Chaps. 10 and 15 | Serum creatine kinase (CK) elevated in muscular dystrophies (commonly >10×normal value), p-lactate (frequently elevated in mitochondrial myopathy, repeated tests recommended), genetic testing, neurophysiology (EMG), muscle biopsy. See Chaps. 10 and 15 | | Malignant hyperthermia [14, 15] | Masseter contraction early warning sign. Other early signs:
unexplained tachycardia, elevated end-tidal CO2
concentration, and muscle rigidity. Hyperthermia is late
sign. Urgent condition, see Sect. 4.4.2.5 | Typical clinical presentation. Raised CK, myoglobin,
K, and P levels in blood. Metabolic/respiratory
acidosis | | Hypokalemic periodic paralysis | Hereditary autosomal dominant hypokalemic periodic
paralysis: family history common. Attacks of weak- | s-K low during attack of paralysis. CMAP (exercise
EMG) | | | ness, lasting hours to days, provoked by, e.g., exercise,
carbohydrate-rich meal, or sudden temperature changes | Hereditary hypokalemic periodic paralysis: Mutation
analysis of SCN4A and CACNAIS genes | | | Acquired hypokalemic paralysis may be caused by
frequent diarrheas | s-K, s-electrolytes, blood gas, ECG | | Hyperkalemic periodic paralysis | Hereditary autosomal dominant hyperkalemic periodic
paralysis: family history common. Exacerbate by K
intake or cold. Weakness and myotonia | Serum potassium, electrolytes, blood gas,
ECG. Mutation analysis of SCN4A | | Critical illness myopathy (CIM) [21-23] | CIM is a frequent complication of critical illness, often
together with CIP. It presents as flaccid weakness,
usually symmetrical and sometimes severe; prolonged
weaning from mechanical ventilation; muscle wasting | EMG, nerve conduction study, muscle biopsy
(loss of myosin) | | Drug-induced myopathy [28]: Corticosteroid-induced myopathy Colchicine, chloroquine, lipid- lowering drugs (e.g., statins), diuretics, p-penicillamine (myasthenic syndrome) | Symmetrical weakness, often severe. Myalgia and muscle atrophy | Muscle strength reduced, often markedly. Tenderness on palpation | #### Other musculoskeletal causes: Table 4.6 Acute disturbance of motor function, other musculoskeletal causes | Condition | Typical symptom/finding | Initial diagnostic aid | |---|---|---| | Infection/postinfectious | | | | Septic joints | Local pain, malaise, weakness in muscles in affected | Ultrasound/X-ray/MRI/scint, arthrocentesis, bacterial | | Autoimmune arthritis | area | culture, CRP, SR, blood count, autoantibody tests | | Osteomyelitis | | | | Trauma/sports injury | | | | Fracture | History of trauma. Pain, swelling, obvious deformity | X-ray, ultrasound, MRI, clinical exam | | Elbow dislocation | Common dislocation in children under age 5 years
(Nursemaid's elbow) pain, reduced movement of
affected arm | Clinical examination (inability to rotate arm and flexing
elbow fully) | | Compartment syndrome | Abnormal sensation, (severe) pain, swelling, reduced
strength, pallor Muscle compartment tense on
palpation | Compartment syndrome: serum creatine kinase,
urine-myoglobin, compartment pressure
measurement | | Deep vein thrombosis | Commonly in leg. Pain, swelling, tenderness. Red,
warm skin | Ultrasound, venography, MRI | | Snake venom (hemotoxic procoagulant
or myotoxic venom) | Hemotoxins (e.g., most vipers) cause hemolysis and
disrupted blood clotting. Commonly severe pain in
wound site, followed by swelling and discoloration.
General symptoms with vomiting, dyspnea,
dizziness, affected circulation | Hemotoxins: D-dimer elevated, fibrinogen very low,
prolonged prothrombin time, APTT, and clotting
time. Assess renal function | | | Myotoxins (e.g., rattlesnakes): rhabdomyolysis with
muscle pain, tenderness, and paralysis | Myotoxins: serum creatine kinase, s-myoglobin, and
u-myoglobin highly elevated. Assess renal function | | Tumor | | | | Osteosarcoma, Rhabdomyosarcoma | Palpable tumor mass, pain, abnormal sensitivity, and
muscle weakness if nerve compression.
Osteosarcomas may cause bone pain, limping, and
fracture | X-ray, MRI, CT scan, biopsy | ## Muscle weakness, "urgent conditions": - 1. Stroke/Cerebrovascular insult - 2. Spinal cord compression - 3. AIDP / Guillain-Barré syndrome - 4. Myasthenic crisis and botulism - 5. Malignant hyperthermia # AIDP/Guillain-Barrés syndrom Acute inflammatory demyelinating polyneuropathy (AIDP) *Incidense*: 0.5-1/100 000/yr Symptom: Preceding infection common. Pareasthesias in feet and hands followed by weakness (distal ->proximal). Pain may occur. CAVE potential respiratory failure and dysautonomia! Miller Fischer syndrome: svaghet proximalt -> distalt, ataxia, ophtalmoplegia # Diagnosis AIDP/Guillain-Barré: **Liquor:** Protein elevated, with or w.o. pleocytosis (10-50/ml, lymphocyte predominance). Max appr day 10! Serology: Anti-ganglioside a.b. occur **Neurophys:** ENeG –slowed conduction velocities, F-response latency/lack of F-wave (sign demyelinating process). **Neuroradiology** (MR with contrast): Enhancement of nerve roots. # Treatment AIDP/Guillain-Barré: IVIG: 0.4 mg/kg/d for 5 days, alternatively 2 g/kg over2-4 days. Plasmapheresis Profylaxis DVT: Low-molecular heparin Profylaxis stress caused gastritis: H2-antagosist GI funtion: Lactulosis, enema # Myasthenic crisis: Myastenia gravis: Autoimmune defect of neuromuscular junction (Ach rec) Myasthenic crisis: Acute worsening of MG. Provoked by e.g. fever, infection, aspiration, medicines (high dose cortisone, aminoglycosides, erythromycin, clindamycin) **Cholinergic crisis:** Acute worsening from overdose of Cholinesterase inhibitors # Myasthenic crisis: **Symptoms:** Ptosis, diplopia, general uscle weakness – fatigability, dysphonia, dysphagia RESPIRATORY FAILURE! **Diagnosis:** Neurophysiology (rep nerve stim, single fiber-EMG, Anti-AChR, Anti-MuSK). Clinical tests endurance Edrophonium /"Tensilon" test (film response of chose muscle groups) # Myasthenic crisis: **Treatment:** Cholinesterase inhibitor (Pyridostigmin, Infants: 0.5-1 mg/kg/dose each 4-6 h, older children 7 mg/kg/d distributed on 3-6 doses, adults 60 -180 mg x 3-6. 0.1 mg/kg per dose if i.v. route) Surveillance respiratory function! Readiness for ventilator care! Possibly IVIG, cortisone, plasmaferesis ### Acute infantile botulism: **Symptoms:** Remind of severe MG. NOTE! Often preceded by constipation. Ptosis, diplopia, general muscle weakness – fatigability, dysphonia, dysphagia RESPIRATORY FAILURE! **Diagnosis:** Neurophysiology (rep nerve stim, single fiber-EMG). Detection Cl difficile in faeeces, botulinum toxin in serum. **Treatment:** Supportive care, surveillance respiration and readiness ventilator care. Botulinum IG. # Malignant hyperthermia, symptoms: ### **Specific** - Muscle rigidity* - Increased CO₂ production - Marked temperature elevation - Rhabdomyolysis #### Non-Specific - Tachycardia - Tachypnea - Acidosis (respiratory; metabolic) - Hyperkalemia # Malignant hyperthermia, diagnosis: #### **Muscle Contracture Test** - Caffeine HalothaneContracture Test(CHCT) - Gold Standard - MH Muscle Biopsy Center #### **Genetic Testing** - Ryanodine receptor (RYR1 Gene) - Primary genetic focus # Malignant hyperthermia, triggers: ### **MH Triggers** - Potent volatile anesthetics - Sevoflurane - Desflurane - Isoflurane - Depolarizing muscle relaxants - Succinylcholine #### **NOT MH Triggers** - Nitrous oxide - IV induction agents - Non-depolarizing muscle relaxants - Opioids # Malignant hyperthermia, physiology: - Inherited disorder of skeletal muscle - Problem w/ reuptake of intracellular Ca²⁺ - Exact cause uncertain - Ryanodine receptor / central core disease - Disease inheritance is autosomal dominant - MH-like reactions in other myopathies / MDs # Malignant hyperthermia, treatment: - Stop triggering inhalation agents/succinylcholine - Hyperventilate high flow 100% O₂ - Dantrolene 2.5mg/kg push, repeat prn - Continue monitoring & interventions - Treat hyperthermia, acidosis, and arrhythmias ### A few words on: - 1. Intensive care neuropathy/myopathy - 2. "Floppy infant" - 3. Status dystonicus ## Intensive care neuropathy/myopathy ## Intensive care neuropathy/myopathy # "Floppy infant syndrome": A condition of marked muscle relaxation in a baby so that when supported face down the baby droops over the hand like an inverted "U" ### Central or peripheral cause? #### **Central cause** - Reduced conscience - (w.o. weakness) - Peripheral reflexes often increased - Primitive reflexes decreased #### Peripheral cause - Normal conscience - Weakness - Absence of peripheral reflexes #### Anatomical level - cause: Table 1 Localization in the Floppy Infant | Origin of Hypotonia | Structural
Localization | Clinical Pathological Conditions | |--------------------------------------|----------------------------|---| | Supraspinal/suprasegmental hypotonia | Brain | Systemic illness (sepsis, CHF, HIE) | | (preserved DTR) | Brainstem | Syndromic hypotonia | | | | Cerebral dysgenesis | | | | Grossly normal brain | | | Craniovertebral junction | Spinal cord injury | | Segmental or motor unit hypotonia | Anterior horn cell | Spinal muscular atrophy | | (DTR depressed or lost) | Peripheral nerve | HMSN | | | Neuromuscular junction | Myasthenia gravis, congenital myasthenic syndromes, botulism | | | Muscle | Congenital myopathies, metabolic myopathies,
neonatal presentation of muscular dystrophy | DTR = myotatic reflexes (deep tendon reflexes); CHF = congestive heart failure; HIE = hypoxic ischemic encephalopathy; HMSN = hereditary motor sensory neuropathy. #### Investigations central cause: - B-glucose, electrolytes, blood gas, Blood count, sbilirubin, screen for sepsis incl LP - EEG/aEEG - Ultrasound/CT/MR CNS - Metabolic workup, TORCH - Karyotype/Array CGH if dysmorphic traits - Genetic analysis Prader-Willi syndrome or other suspected hereditary disorder/syndrome ### Investigations peripheral cause: - s-CK (-> genetic analysis cong mu.dys) - EMG, EnEG, repetitive nerve stim. - muscle biopsy (-> genetic analysis cong myopathy, mitochondrial disease, metabolic myopathy) - specific genetic tests: e.g. congenital DM1, SMA (deletion *SMN*) - Short acting cholinesterase inhibitors (Edrophonium/Tensilon test) and/or attempt pyridostigmin therapy ## Status dystonicus 'Increasingly frequent and severe episodes of generalized dystonia (sustained involuntary muscle contraction leading to abnormal postures and movement) which requires urgent hospital admission' Acute cause (e.g. near-drowning, asphyxia, encephalopathy) or secondary to known dystonia **Triggering factors**: Infection, stress, trauma, surgery, fever, onset/withdrawal of drug (e.g. Li, clonazepam). # Status dystonicus **Treatment/management**: Fluid and electrolyte balance, control vital parameters, analgetics. ATT.! risk rhabdomyolysis -> myoglobinuria ->kidney failure! Indication deep sedation (midazolam, propofol) with repirator? ### ENLS: Initial management of acute weakness